A combo (Sonic & 2 x-hot-films or 3D-multisensor probe) setup for atmospheric turbulence measurements

> Eliezer Kit Tel-Aviv University Chris Hocut University of Notre Dame

In collaboration with: Joe Fernando Dan Liberzon

- Fine resolution measurements of atmospheric turbulence, which enable to determine dissipation, velocity derivatives etc. is an important task.
- The standard instruments used for velocity field measurements such as Sonic anemometer and Lidar have a low temporal and spatial resolution.
- Miniature hot-wires or films are suitable for these purposes, however, they require frequent calibrations of the wires/films.
- The use of in-situ calibration by utilizing a low resolution data from Sonic and NN algorithm appears to be very attractive but only in case that an appropriate procedure is developed.

Layout of the talk

- Part 1: Short recall: Feasibility Study (Work in ASU)
 Approximations of input/output relations: Polynomial least square Fit and Neural Network Laboratory and Field Results from ASU
- Angular probability distribution
- "Virtual" Probe algorithm (hot-film modeling using "effective velocity" approach) to establish the range of the method applicability (Recent work in TAU)
- **Part 2**: Combo deployment in Dugway and Preliminary results from fall experiments in Dugway.
- First estimates from spring experiments.
- Conclusions

Relevant Papers

- E. Kit, A. Cherkassky, T. Sant, H.J.S. Fernando. *In-situ* calibration of hot-film probes using a co-located sonic anemometer: Implementation of a neural network. *Journal of Atmospheric and Oceanic Technology-AMS, Vol. 27*, No. 1, 23-41 (2010).
- E. Kit and B. Gritz. *In-situ* calibration of hot-film probes using a co-located sonic anemometer: angular probability distribution properties. **Journal of Atmospheric and Oceanic Technology-AMS, Vol. 28,** 104-110 (2011).
- L. Vitkin, D. Liberzon, B. Grits and E. Kit. Study of *in-situ* calibration performance of co-located multi-sensor Hot-Film and Sonic anemometers using a "virtual probe" algorithm. **Submitted 2013**

1. Feasibility Study

Left: Laboratory - set-up for probe yawing Right: Calibration in the field - general view

Presentation of velocity components as polynomials of voltages across the wires. TKE dissipations and skewness of velocity derivatives

 $U_i = f_i(E_1, E_2)$

$$f_i(E_1, E_2) = \sum_{kl} c_{ikl} P_k(E_1) P_l(E_2); P_k(E) = E^k, 0 \le k, l \le 4, k+l \le 4$$

Linear system for determination of polynomial coefficients c is obtained from calibration data using the least square fit.

Dissipation:
$$\epsilon = 15\nu \left(\frac{\partial u}{\partial x}\right)^2$$
; $\partial x = -U\partial t$

Skewness of velocity derivative:
$$Sk = \overline{\left(\frac{\partial u}{\partial x}\right)^3} / \left(\overline{\left(\frac{\partial u}{\partial x}\right)^2}\right)^{3/2}$$

Spectra of u-red, v-blue, w-green: a-using NN procedure, b-using PF procedure. Lab_Exp# 1

Spectra of u-red, v-blue, w-green: a-using NN procedure, b-using PF procedure. Field_Exp# 2

a)

b)

Angular Probability Distribution

Angular probability: Comparison of model prediction with experimental data

VIRTUAL PROBE ALGORITHM

Virtual Probe

MATERHORN-X Combo Probe Deployment

Combo Probe Placement

MATERHORN-X-1

Combo probes located at 2m and 6m

Combo probe electronics

Probe Performance Tested

Technology Improvements

Optical Encoders 🔍

Provides position feedback with 0.1° accuracy

MATERHORN-X-2

3D Probe

Combo probes located at 3m and 8m

2-X Probes

MATERHORN-X-2

Combo probe electronics

Quiescent IOP Turbulence Production Events

DPG GMAST and Towers

IOP 2, 4:45 UTC (22:45 MDT): Collision occurs between slope and valley flow

EFS-Slope Site ES2 Tower

IOP 2, 4:45 UTC (22:45 MDT): Collision occurs between slope and valley flow

Fall Experiment Results

"What Sonic Anemometers Miss"

Sonic time series at October 19-20 (from 12:57 to 13:38)

Sonic time series for the nocturnal time period at October 19 (9:30-11PM)

Spectra for Minutes 26-32

Spectra for Minutes 33-40

Spectra for Minutes 43-57

Spectra for Minutes 72-85

Spectra computed for the overlapping period of 30 min

Time series

Sonic time series at October 9-10 (from 17:20 to 16:39)

Results at 6m height October 10th, afternoon 3PM

NofGoodMin, avru, avrv, avrw 5.162 0.187 0.030 16 NofGoodMin, rmsu, rmsv, rmsw 0.811 0.750 0.469 16 NofGoodMin, skwu, disu, disw 0.377 0.046 0.032 16

Spectra at low frequency resolution Great number of averaging

Spectra at high frequency resolution Low number of averaging

- Combo setup and Neural Network algorithm enable to obtain valuable information on the atmospheric flow especially during the transition events.
- Careful analysis is needed to select appropriate calibration datasets and time series for data processing
- The extrapolation of spectra based on Sonic data only can lead to a faulty conclusions as was indicated by velocity spectra obtained from combo measurements.
- There is indication that the use of four-sensor probes may be of advantage and can improve the signal-to-noise ratio due to redundant information.
- Further analysis of the spring data is in progress and hopefully will provide new perception

THANK YOU! THE END

NEW HARDWARE DEVELOPMENTS

4-wire array home-made and used by Tsinober, Kit and Dracos (JFM, 1992)

DANTEC Development of a new 3D-probe with 4 hot-film sensors.

A small autonomous UAV: 30 pound payload capacity, airborne for two hours at 30-40 mph.

• Hot-films (x-probes) at the jet exit. Miniature Pitot tube for simultaneous mean velocity measurements

3. Future plans: the use of UAV and combo setup (pair of *x*-hot-films or a triple-sensor fiber-film probe & sonic) for turbulence atmospheric measurements in mountain terrain.

Development of three-dimensional traversing and 3D calibration procedure

Calibration Data Sets and Approximations

Table 1 List of calibration datasets and procedures.

Calibration	Polynomial Fit	Neural Network
datasets/Approximations		
CBS (Calibrator Based	1 – PF (CBS)	2 – NN (CBS)
dataSet)		
SBS (Sonic Based	3 – PF (SBS)	4 – NN (SBS)
dataSet)		

Angular distribution – development, cont...

- using the expressions $(v'_x)^2 = (v \cos \theta \overline{v})^2$, $v'_y = v \sin \theta \cos \varphi$
- and $v'_{z} = v \sin \theta \sin \varphi$
- The probability density function in spherical coordinate system

$$P(\varphi,\theta,x) = \frac{x^{2} \sin \theta}{(2\pi)^{\frac{3}{2}} \overline{v}k \cdot \sigma_{n}^{3}} \cdot \exp\left(-\frac{(x\cos\theta-1)^{2} + x^{2} \sin^{2}\theta/k}{2\sigma_{n}^{2}}\right).$$

Where $x = v/\overline{v}$, $\sigma_{n} = \sigma_{x}/\overline{v}$
For isotropic case k= 1,
$$P(\varphi,\theta,x) = \frac{x^{2} \sin \theta}{(2\pi)^{\frac{3}{2}} \overline{v} \sigma_{n}^{3}} \cdot \exp\left(-\frac{(x-\cos\theta)^{2} + \sin^{2}\theta}{2\sigma_{n}^{2}}\right).$$

Angular distribution – development, cont...

Integrating over x and over φ in axisymmetric case yields

$$P(\theta) = \frac{\tan\theta}{k\sigma_n\cos^2\theta \cdot f^2} \left\{ \frac{\exp\left(-\frac{1}{2\sigma_n^2}\right)}{\sqrt{2\pi}} + \frac{\left(f\sigma_n^2 + 1\right)\exp\left(\frac{f^{-1} - 1}{2\sigma_n^2}\right)}{2\sigma_n\sqrt{f}} \cdot \left[1 - erf\left(-\frac{1}{\sqrt{2f}\sigma_n}\right)\right] \right\}$$

where $f = 1 + \tan^2 \theta / k$ In the isotropic case (*k*=1):

$$P(\theta) = \frac{\tan\theta}{\sigma_n} \cdot \left\{ \frac{\exp\left(-\frac{1}{2\sigma_n^2}\right)}{\sqrt{2\pi}} + \frac{\left(\sigma_n^2 + \cos^2\theta\right)\exp\left(-\frac{\sin^2\theta}{2\sigma_n^2}\right)}{2\sigma_n\cos\theta} \cdot \left[1 - erf\left(-\frac{\cos\theta}{\sqrt{2\sigma_n}}\right)\right] \right\}$$

Results – TI

• For TI (20%, 30%, 40%): Turbulence Intensity

	TI 20%				TI 30%				TI 40%								
	Mean	STD]	ГІ	δί		Mean	STD	TI	δi		Mean	STD		TI	δi	
U (m/s)	2.97	0.	·57		0.0	56	1.95	0.57	7		0.1	1.41	L	0.58			0.19
V (m/s)	0	0.	43	20%	0.	05	-0.01	0.44	31%		0.07	-0.02		0.43	42%		0.15
W (m/s)	0	0.	43		0.	54	0	0.44	ŀ		0.06	0.01	L	0.42			0.16

STD U	STD V	STD W
0.57	0.44	0.43

Results - Anisotropy

ISTI30	U (m/s)	V (m/s)	W (m/s)	LTII30	U (m/s)	V (m/s)	W (m/s)
Mean	1.92	0.00	0.00	Mean	1.95	-0.01	0.00
RMS	0.51	0.51	0.49	RMS	0.57	0.44	0.44
TI	32%			TI	31%		
δί	0.19	0.12	0.10	δί	0.10	0.07	0.06

Jet Facility and traverse for probe yawing

Questions Regarding HW Probe insitu Calibration

- What are the TI bounds for Sonic calibration?
- What is the effect of the LPF on calibration set?
- What is the effect of anisotropy on the calibration?

Turbulence Anisotropy Effect

- Real flows are anisotropic. What's the effect on calibration quality?
- Generate isotropic fields.
- Check calibration quality.

Virtual Probe contd. 3

LPF Contribution to Calibration Error

Sketch of velocity vector, components and angles

Velocities and angles at a given point:

- \vec{v} mean velocity,
- \vec{v} fluctuating part,
- **v** full velocity;
- $\boldsymbol{\theta}$ the deviation angle of full
- velocity from mean velocity,
- ϕ the azimuth angle.

Virtual Probe

- Use of calibration data-set previously measured (CBS dataset from Kit et al., 2010)
- Calculated the effective velocity for each wire.

 $U_{eff}^2 = U_n^2 + k^2 U_t^2$

 Found best fit for King's law coefficients A, B and the power n.

 $E^2 = A + B \cdot U_{eff}^n$

Virtual Probe contd. 2

	A	B	n
Wire 1	3.30	2.19	0.547
Wire 2	3.85	2.20	0.587
Wire 3	3.74	2.12	0.567
Wire 4	3.23	1.84	0.579

			Measure	ed (CBS)			Calcu	ulated	
		e11	e12	e21	e22	e11	e12	e2 1	e22
Z	e11	1.000	0.504	0.748	0.690	0.979			
eas (CI	e12	0.504	1.000	0.718	0.631		0.975		
sure 3S)	e21	0.748	0.718	1.000	0.609			0.966	
ed	e22	0.690	0.631	0.609	1.000				0.962

• For TI (20%, 30%, 40%):

No LPF of calibration voltage (ideal)

LPF of calibration voltage (real)

LTI20_VP	U (m/s)	V (m/s)	W (m/s)
Mean	3.00	0.00	0.00
RMS	0.57	0.44	0.43
TI	20%		
δ_{i}	0.02	0.03	0.02
LTI30_VP	U (m/s)	V (m/s)	W (m/s)
Mean	2.00	0.00	0.00
RMS	0.57	0.43	0.42
TI	29%		
δ_{i}	0.04	0.06	0.04
LTI40_VP	U (m/s)	V (m/s)	W (m/s)
Mean	1.52	-0.01	0.00
RMS	0.54	0.42	0.40
TI	37%		
δί	0.16	0.11	0.11

LTI20	U (m/s)	V (m/s)	W (m/s)
Mean	2.97	0.00	0.00
RMS	0.57	0.43	0.43
TI	20%		
δί	0.06	0.05	0.04
LTII30	U (m/s)	V (m/s)	W (m/s)
Mean	1.95	-0.01	0.00
RMS	0.57	0.44	0.44
TI	31%		
δί	0.10	0.07	0.06
LTI40	U (m/s)	V (m/s)	W (m/s)
Mean	1.41	-0.02	0.01
RMS	0.58	0.43	0.42
TI	42%		
δί	0.19	0.15	0.16

Conclusions

- NN model works with calibration datasets with unevenly distributed data points, PF works only with evenly.
- Field: Nocturnal works best and recommended.
- Very interesting spectra in our short preliminary campaign.
- Model of Angular Density Probability (ADP) is developed based on Gaussian distribution of velocity components.
- Angular Probability Distribution for calibration dataset is twice as narrow as for full signal. PF fails, NN comes through.
- Studying of non-linearity defined as RMS to mean velocity ratio
- Further development of the method: establishing of criteria for data quality.