

Countergradient Heat Fluxes and The Impact of Soil Moisture on Katabatic Timing and Structure

MATERHORN INVESTIGATOR MEETING South Bend October 2015

> ¹Derek D. Jensen ¹Eric R. Pardyjak

²Daniel F. Nadeau

¹Department of Mechanical Engineering University of Utah Salt Lake City, Utah 84112

²Department of Civil and Water Engineering Université Laval Quebec City, Canada

Introduction

- ▶ MOST and analogy to Fourier's law (K-Theory) invalid
- Occurs when time of flux reversal differs from time of gradient reversal
- Flux reversal may precede gradient reversal and vice-versa
- Blay-Carreras et al. (2014) observed the flux reversal preceding the gradient reversal by 30–80 min
- Study Objective: Understand and predict the type and duration of the countergradient behavior

Background and Definitions

- Paper accepted in Boundary-Layer Meteorology MATERHORN special issue, "Observations of near-surface heat-flux and temperature profiles through the early evening transition over contrasting surfaces"
- > A study of quiescent, clear sky transitions with fully functional instrumentation
 - 8 days at Playa, 13 at Sagebrush
 - Individual and ensemble averaged statistics analyzed
- Timing variable definitions [min]
 - ► Time relative to net-radiative sunset: \(\tau \equiv t = t t_{\mathbb{R}_n=0}\)
 - Time of persistent heat flux reversal: \(\tau_{flux}\)
 - Time of persistent gradient reversal: $au_{
 m grad}$
 - Countergradient duration: $t_{lag} \equiv \tau_{flux} \tau_{grad}$

3

P	5	r	÷	1	
	a	ь.	۰.	+	

Countergradient Duration

- $\blacktriangleright t_{\rm lag} \equiv \tau_{\rm flux} \tau_{\rm grad}$
- ► Hypothesis: $t_{\text{lag}}(z) \approx -\frac{\partial \tau_{\text{grad}}}{\partial z}(z z_{\text{ref}}) t_{\text{lag}}(z_{\text{ref}})$
- ▶ $t_{\rm lag} < 0 \rightarrow$ flux reversal *precedes* gradient reversal (Blay-Carreras et al., 2014)
- $\blacktriangleright \ t_{\rm lag} > 0 \rightarrow {\sf flux} \ {\sf reversal} \ {\it follows} \ {\sf gradient} \ {\sf reversal}$

D	5	2	+	1	
	d	H	L.	±.,	

Heat Flux Budget

- Hypothesis: Terms II (gradient) and IV (buoyant) dictate countergradient behaviour
- ▶ The ratio of II/IV evaluated in the late afternoon indicate the countergradient type and duration: $\frac{H}{IV}|_{LA} > 1.6 \rightarrow t_{lag} < 0$ and $\frac{H}{IV}|_{LA} < 1.6 \rightarrow t_{lag} > 0$

Late-Afternoon Gradient to Buoyant Production Ratio

- $\overline{t_{\text{lag}}} > 0$ well-defined by a linear fit
- $\overline{t_{\text{lag}}} < 0 \text{Only 2 points}$
- Exact shape of the curve is unknown

Idealized Schematic of Countergradient Behaviour

- Grey shading is a countergradient layer
- In both cases, the very near-surface flux is co-gradient
- ▶ Flux in countergradient layers is co-gradient with $\frac{\partial \overline{\theta}}{\partial z}|_{z=0}$

Observed Countergradient Behaviour

- High density temperature with IR surface temperature
- Cyan curve shows Playa countergradient behaviour
- Green and cyan curves show Sagebrush countergradient behaviour

			-1	
Р	r	E.		

Background

Figure: Taken from Whiteman (2000)

- > Driven by horizontal temperature gradients between valley air mass and the slope
- ▶ Banta and Gannon (1995): From simulations, increased soil moisture retards katabatic flow
- Study Objective: Observationally study the impact of increased soil moisture on katabatic development and structure; develop a simple model that incorporates soil moisture

9

Instrumentation

- Eastern Slope of Granite Peak
- Desert Steppe Vegetation
- Low soil moisture
- Anabatic/katabatic diurnal flow with frequent valley interaction
- ► Four 20 m + towers
- Sonic Anemometers at 5–8 levels
- Soil moisture and Solar Radiation observations at 6 locations throughout slope

Jensen D.D., Pardyjak E.R.

MATERHORN

October 7, 2015

10

I dit I	Tatt 2	Conclusion	References
	ct of Soil Moisture on Katabatic F ^{oil Moisture Transition}	low	
	▶ 1 Oct. 2012 - Quiescent Synoptic Con	ditions	

▶ Soil moisture at 5 cm: 0.052 m³ m⁻³

Part 2

- Air moisture at 10 m: 3.7 g kg⁻¹
- ▶ Katabatic flow develops at 18:00 MST, 45 min *before* sunset

F dTL 1	F dTL 2	Conclusion	References
Effect of Soil N High Soil Moisture Trans	Noisture on Katabatic	: Flow	

- 13 Oct. 2012 "Quiescent" Synoptic Conditions
- Soil moisture at 5 cm: 0.113 $m^3 m^{-3}$
- Air moisture at 10 m: 7.1 g kg⁻¹
- ▶ Katabatic flow develops at 19:15 MST, 45 min after sunset

Effect of Soil Moistu Simple Model	re on Katabatic Flow	

- Model Objective: Use simple inputs to model SEB, katabatic timing and structure
- Surface Energy Budget
 - $SW \downarrow = S \cdot T_K \cdot \cos \hat{\theta}$ (Zhang and Anthes, 1982)

Part 2

- $LW \uparrow = \sigma T_0^4$
- ▶ $LW \downarrow = constant$
- ▶ Ground Heat Flux: $H_G = C_v z_1 \frac{\partial \overline{T}}{\partial t} + K_H \frac{\partial T}{\partial z}|_{z=z1}$ (Bailey et al., 2015)
- Sensible and Latent Heat Flux from Penman-Monteith (Allen, 1998)
- Soil Properties
 - ▶ Albedo: $\alpha = \eta_0 (\alpha_{dry} \alpha_{sat})/0.2 + \alpha_{dry}$ (Idso and Jackson, 1975)
 - ▶ Thermal Conductivity: $K_H = exp[-\log(\psi_s(\frac{\eta_s}{n})^b) + 2.7]$ (Mccumber and Pielke, 1981)
 - ▶ Soil Heat Capacity: $C_v = (1 \eta_s) * C_p + \eta C_w$ (Moene and van Dam, 2014)
- Katabatic Timing and Structure (Manins and Sawford, 1979)
 - Height: $H = C_1(\sin\beta)^{2/3}s$
 - Velocity: $U = C_2 (\sin \beta)^{2/9} \left(\frac{g}{\theta_{va}} \overline{w' \theta'_0} s \right)^{1/3}$
 - Temperature Deficit: $\overline{d} = C_3(\sin\beta)^{-8/9} \left(\frac{g}{\theta_{Va}} \overline{w'\theta'_0} \right)^{2/3} s^{-1/3}$
 - Start time: $\overline{u} \frac{\partial \overline{u}}{\partial x} \approx g \overline{d} \frac{\sin \beta}{\overline{\theta}}$ (Hunt et al., 2003)

Part 1	Part 2	Conclusion	References
Effect of Soil Moisture Soil Properties	e on Katabatic Flow		

Part 1	Part 2	Conclusion	References

Radiation Balance: Dashed Line is Modeled

Part 1	Part 2	Conclusion	References
		uia Ela	

Ground Heat Flux

Part 1	Part 2	Conclusion	References
Conclusions			

- Countergradient Heat Flux Observations Near Sunset
 - Countergradient type and duration can be forecast by the ratio of gradient to buoyant production of sensible heat flux
 - ▶ Heat flux at all levels is co-gradient with $\frac{\partial \overline{\theta}}{\partial z}|_{z=0}$, local countergradient fluxes due to "residual" layers
- Effect of Soil Moisture on Katabatic Flow
 - Observations show a delay in katabatic development during moist transitions
 - Models accurately estimate the albedo and heat capacity of the soil as a function of soil moisture, the thermal conductivity model performs poorly
 - The radiation balance is accurately model but H_G is overestimated
 - There's still a lot of work to do!

Thank You!

Part 1	Part 2	Conclusion	References
References I			

- Allen RG (1998) FAO Irrigation and Drainage Paper Crop by. Irrig Drain 300(56):300, URL http://www.kimberly.uidaho.edu/water/fao56/fao56.pdf
- Bailey BN, Stoll R, Pardyjak ER, Miller NE (2015) A new three-dimensional energy balance model for complex plant canopy geometries : Model development and improved validation strategies. Agric For Meteorol
- Banta RM, Gannon PT (1995) Influence of soil moisture on simulations of katabatic flow. Theor Appl Climatol 52:85-94
- Blay-Carreras E, Pardyjak ER, Pino D, Alexander DC, Lohou F, Lothon M (2014) Countergradient heat flux observations during the evening transition period. Atmos Chem Phys 14:9077–9085
- Hunt J, Fernando H, Princevac M (2003) Unsteady thermally driven flows on gentle slopes. J Atmos Sci 60:2169–2182, DOI 10.1175/1520-0469(2003)060(2169:UTDFOG)2.0.CO;2
- Idso S, Jackson R (1975) The dependence of bare soil albedo on soil water content. J Appl Meteorol Climatol 14(1):109–113, DOI 10.1175/1520-0450(1975)014(0109:TDOBSA)2.0.CO;2
- Manins PC, Sawford BL (1979) A Model of Katabatic Winds. DOI 10.1175/1520-0469(1979)036(0619:AMOKW)2.0.CO;2
- Mccumber MC, Pielke RA (1981) Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model: 1. Soil layer. Journal of Geophysical Research 86(C10):9929–9938, DOI 10.1029/JC086iC10p09929, URL http://doi.wiley.com/10.1029/JC086iC10p0929
- Moene AF, van Dam JC (2014) Transport in the Atmosphere-Vegetation-Soil Continuum Soil Science Cambridge University Press. Cambridge University Press, Cambridge, URL http://www.cambridge.org/us/academic/subjects/ earth-and-environmental-science/soil-science/transport-atmosphere-vegetation-soil-continuum
- Zhang D, Anthes R (1982) A high-resolution model of the planetary boundary layer—sensitivity tests and comparisons with sesame-79 data. J Appl Meteorol 21(11):1594-1609, URL http://opensky.library.ucar.edu/collections/OSGC-000-008-028