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Background
 Flux-gradient relationships are used extensively to estimate fluxes within the 

atmospheric surface layer

 Monin-Obukhov Similarity Theory (MOST) is most common

 Data from MATERHORN are being used to evaluate flux-gradient relationships 
in the surface layer during the evening transition.  Counter-gradient (CG) flux 
behavior is the principal focus.

 GOAL:  Obtain a more complete understanding of the driving mechanisms 
behind near-surface, counter-gradient heat fluxes during the evening 
transition
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A three-year, multi-institution program designed to improve 
weather predictability over complex terrain
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Granite Peak
2 Field Campaigns 
• Fall: 25 Sept. 2012 – 21 Oct. 2012
• Spring: 1 May 2013 – 31 May 2013
3 Sites of Interest
• Sagebrush
• Playa
• East Slope 5 (ES5)
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Relevant  
Instrumentation
• Sonic Anemometers
• Finewire

Thermocouples
• Temperature/RH
• Net Radiometers
• Soil Sensors
Playa
Heights: 0.5, 2, 5, 10, 20, 26 m
• Higher Albedo (0.32)
• High Soil Moisture
• 𝑧0 ≈ 1𝑚𝑚
• No vegetation 

Sagebrush
Heights: 0.5, 2, 5, 10, 20 m
• Lower Albedo (0.26)
• Low Soil Moisture
• 𝑧0 ≈ 20 𝑐𝑚
• Desert Steppe
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Playa Sagebrush
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Non-Dimensional Temperature Gradient, 𝜙ℎ

•𝜙ℎ =
𝜅𝑧

𝜃∗

𝑑𝜃

𝑑𝑧
where 𝜃∗ = −

𝑤′𝜃′

𝑢∗

•Within MOST, 𝝓𝒉 = 𝒇 𝜻 where 𝜁 =
𝑧

𝐿
and 𝐿 is the Obukhov Length

•𝜙ℎ can be used to estimate temperature profiles and heat fluxes

•𝜙ℎ can be used to explore the validity of MOST
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Transition Data Analysis

• 5 minute averaging and linear detrending

• Fine wire temperature always used

• Transition periods with high winds (> 7 m s -1) and missing data neglected

• Left with 8 days at Playa, 13 at Sagebrush

• Transitional Relative Time: 𝜏 ≡ 𝑡 − 𝑡𝑅𝑛=0
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Sagebrush
Dashed Line is the Accepted 

Form (Dyer and Hicks, 1970)
𝜙ℎ = 1 + 5𝜁 𝑓𝑜𝑟 𝜁 ≥ 0

𝜙ℎ = 1 − 16𝜁 −0.5 𝑓𝑜𝑟 𝜁 < 0
For Moderately unstable 

conditions
𝜙ℎ,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ≈ 𝜙ℎ,𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

MOST is Valid!

When 𝜁 ≈ 0 during 
transition

2 Issues Arise

ISSUE 1:  Asymptotic Behavior

ISSUE 2: 𝑯 ∝ +𝒅𝜽/𝒅𝒛
Counter-Gradient Heat Fluxes
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Playa

𝜙ℎ =
𝜅𝑧

𝜃∗

𝜕𝜃

𝜕𝑧
where  𝜃∗ = −

𝑤′𝜃′

𝑢∗

For Moderately stable 
conditions

Large Scatter with Some 
Trend

MOST is Sort of Valid
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Counter Gradient Fluxes: Quadrant Analysis

II: Afternoon II: Afternoon

IV: Night
IV: Night

I: 
𝑑𝜃

𝑑𝑧
> 0,

𝑤′𝜃′ > 0

III: 
𝑑𝜃

𝑑𝑧
< 0,

𝑤′𝜃′ < 0

Playa Sagebrush
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Time Scales

• Flux Reversal Time: 𝜏𝑓𝑙𝑢𝑥 ≡ 𝜏𝐻=0

•Gradient Reversal Time: 𝜏𝑔𝑟𝑎𝑑 ≡ 𝜏  𝜕𝜃 𝜕𝑧=0

• Lag Time: 𝑡𝑙𝑎𝑔 = 𝜏𝑓𝑙𝑢𝑥 − 𝜏𝑔𝑟𝑎𝑑

• 𝑡𝑙𝑎𝑔 > 0 when the gradient reversal precedes the flux reversal

• 𝑡𝑙𝑎𝑔 < 0 when the flux reversal precedes the gradient reversal
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1. Variability at Playa is large at all heights

2. Similar Trend at both sites

PlayaBox Plots of τgrad

3. 
𝜕𝜏𝑔𝑟𝑎𝑑

𝜕𝑧
≈ −4 min m-1

Sagebrush
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1.  Again, Playa scatter is large

2.  Occurs simultaneously at all heights

3.  Median behavior of Playa lags 
Sagebrush by approximately 30 minutes

Playa

Sagebrush

Box Plots of τflux
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1.  Variability grows with height at both sites

2. Dashed line computed from 

𝑡𝑙𝑎𝑔 𝑧 ≈ −
𝜕𝜏𝑔𝑟𝑎𝑑

𝜕𝑧
Δ𝑧 − 𝜏𝑔𝑟𝑎𝑑,2𝑚 − 𝜏𝑓𝑙𝑢𝑥,2𝑚

Playa

Sagebrush

Box Plots of tlag

3.  May be valid at other sites!

4.  𝑡𝑙𝑎𝑔,𝑃𝑙𝑎𝑦𝑎 𝑧 > 0, i.e. gradient 

reversal precedes flux reversal

5. 𝑡𝑙𝑎𝑔,𝑆𝑎𝑔𝑒𝑏𝑟𝑢𝑠ℎ 𝑧 > 0 For 𝑧 ≥ 10 m

𝑡𝑙𝑎𝑔,𝑆𝑎𝑔𝑒𝑏𝑟𝑢𝑠ℎ 𝑧 < 0 For 𝑧 ≤ 5 m
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Questions

•What is causing the common CG behavior at 10 m and above?

•What is causing the opposing CG behavior at 5 m and below?
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CG Behavior at ≥10 m
Playa Playa

Sagebrush Sagebrush

1. Very weak gradients aloft with stabilization 
occurring from the top-down

2. Strong fluxes aloft

3. Non-local effects from below allow positive 
fluxes to persist within weakly stable gradients

4. Why does stabilization occur from the top-
down?
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CG Behavior at ≥10 m
Playa

Sagebrush

1.  As 𝐻 decreases, flux divergence creates 
differential cooling.

2. When 
𝜕2𝜃

𝜕𝑧𝜕𝑡
> 0 stabilization is occurring

3.  Very small amount of stabilization is able to 
flip weak gradients aloft
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CG Behavior below 5 m Hypothesis
Playa Sagebrush

2.  Weak surface forcing at Playa allows the 
non-local turbulence to drive the flux

1.  Eddies from atop the surface layer detach 
and transport cool air to the surface

−𝑤′ − 𝜃′ → +𝐻
The effect is stronger at Playa due to higher 
winds.  Previously observed (Brunet, 2002; 
Sahlée et al. 2008, Smedman et al. 2007)
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3.  A convergence zone occurs between ~ 2 and 
5 m at Sagebrush where surface and non-local 
effects compete.  Surface forcing dominates.



• Counter-gradient heat fluxes occur due to the flux reversal preceding the local 
gradient reversal and vice versa

• At Playa, CG behavior is always due to the gradient reversal preceding the flux 
reversal

• At Sagebrush, CG behavior is the same as Playa’s above 10 m and the opposite 
below 5 m

• Reasons for the differing near-surface behavior will be discussed tomorrow.  
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Questions?
Comments?
Concerns?
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H0 Estimate
Playa

Sagebrush

Surface Energy Budget
𝑅𝑛 = 𝐻 + 𝐻𝐿 + 𝐻𝐺 + ΔHS

2.  𝐻𝑃𝑙𝑎𝑦𝑎 less important than 𝐻𝑆𝑎𝑔𝑒𝑏𝑟𝑢𝑠ℎ
Sagebrush

Playa

Assume:  𝐻𝐿 ≈ 0, Δ𝐻𝑆 accounted for in 𝐻𝐺

𝐻 = 𝑅𝑛 − 𝐻𝐺

3. This lends confidence to part I of our 
hypothesis.  What about cool air mixing 
downward?
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Joint Probability 
Distribution Function
For Playa 
(a) Convective conditions with 𝐻 > 0

(d) Surface forcing more important → 𝐻 < 0

(b & c) Competing forces, cool air going up 
(surface forcing/demixing) and cool air coming 
down (mixing from aloft).  Cool air coming 
down is more important → 𝐻 > 0

I: Hot Air 
Going Up, 
𝐻 > 0

III: Cool Air 
Going Down, 
𝐻 > 0

II: Cool Air 
Going Up, 
𝐻 < 0

IV: Hot Air 
Going Down, 
𝐻 < 0

𝜏𝑔𝑟𝑎𝑑 = 45

𝜏𝑓𝑙𝑢𝑥 = 65
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Joint Probability 
Distribution Function
For Sagebrush 
(a) Convective conditions with 𝐻 > 0

(c) Bifurcation continues, Quadrant IV wins, → 𝐻 < 0
𝑤′ is very small indicating viscosity, thermal 
diffusivity are important

(b) Bifurcation occurs between 𝐻 > 0 and 𝐻 < 0, 
Quadrant III wins → 𝐻 > 0

𝜏𝑔𝑟𝑎𝑑 = 40𝜏𝑓𝑙𝑢𝑥 = 30

(d) Vertical mixing remains small, flux is very weakly 
negative
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• Counter-gradient heat fluxes occur due to the flux reversal preceding the local 
gradient reversal and vice versa

• At Playa, CG behavior is always due to the gradient reversal preceding the flux 
reversal

• At Sagebrush, CG behavior is the same as Playa’s above 10 m and the opposite 
below 5 m

• CG behavior above 5 m due to non-local effects

• CG behavior below 5 m at Sagebrush is primarily surface driven

• CG behavior below 5 m at Playa is primarily driven from aloft

• An LES Study is needed for added clarity
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Questions?
Comments?
Concerns?
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