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Background

= Flux-gradient relationships are used extensively to estimate fluxes within the
atmospheric surface layer

= Monin-Obukhov Similarity Theory (MOST) is most common

= Data from MATERHORN are being used to evaluate flux-gradient relationships
in the surface layer during the evening transition. Counter-gradient (CG) flux
behavior is the principal focus.

= GOAL: Obtain a more complete understanding of the driving mechanisms
behind near-surface, counter-gradient heat fluxes during the evening
transition
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Il ) | e Fall: 25 Sept. 2012 — 21 Oct. 2012
., * Spring: 1 May 2013 — 31 May 2013
2 b3 3 Sites of Interest

e Sagebrush

* Playa

e East Slope 5 (ES5)

} Background General CG Behavior CG Behavior = 10 m CG Behavior < 5m



Relevant a2 . Sagebrush

Instrumentation
Sonic Anemometers
Finewire
Thermocouples 8N ..
Temperature/RH ! ot
Net Radiometers e
Soil Sensors ! -

Playa
Heights: 0.5, 2, 5, 10, 20, 26 m .

Higher Albedo (0.32) "~'-‘:“ S— > S
High Soil Moisture ——
Zg =~ Imm

No vegetation

Sagebrush =
Heights: 0.5, 2, 5, 10, 20 m :
Lower Albedo (0.26)
Low Soil Moisture
Zg =~ 20 cm
Desert Steppe
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Non-Dimensional Temperature Gradient, ¢,

Kz do w'g’
¢h = Q_*E where 9* - — "

* Within MOST, ¢p, = f({) where { = %and L is the Obukhov Length

* ¢, can be used to estimate temperature profiles and heat fluxes

* ¢, can be used to explore the validity of MOST
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ransition Data Analysis

* 5 minute averaging and linear detrending

* Fine wire temperature always used

* Transition periods with high winds (> 7 m s %) and missing data neglected
* Left with 8 days at Playa, 13 at Sagebrush

* Transitional Relative Time: 7 = t — tpp=g
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Counter Gradient Fluxes: Quadrant Analysis
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ime Scales

* Flux Reversal Time: Tfy, = Ty=g

* Gradient Reversal Time: Tg,.qq = T3 /92=0

* t1ag > 0 when the gradient reversal precedes the flux reversal

* tiag < 0 when the flux reversal precedes the gradient reversal
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Questions

* What is causing the common CG behavior at 10 m and above?

* What is causing the opposing CG behavior at 5 m and below?
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1. Very weak gradients aloft with stabilization
occurring from the top-down

2. Strong fluxes aloft

3. Non-local effects from below allow positive
fluxes to persist within weakly stable gradients

Sagebrush

4. Why does stabilization occur from the top-
down?
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CG Behavior at >10 NI
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CG Behavior below 5 m Hypothesis

T rad Playa Sagebrush a
: ies from atop the surface layer detach
and transport cool air to the surface i//
(—w' —6") - +H _—
The effect is stronger at Playa due to higher =
winds. Previously observed (Brunet, 2002; "'é‘
Sahlée et al. 2008, Smedman et al. 2007) E-«

2. Weak surface forcing at Playa allows the
non-local turbulence to drive the flux \

~ Huﬂﬂ
3. A convergence zone occurs between ~ 2 and T T
5 m at Sagebrush where surface and non-local [a [a
effects compete. Surface forcing dominates.
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Conclusions

* Counter-gradient heat fluxes occur due to the flux reversal preceding the local
gradient reversal and vice versa

* At Playa, CG behavior is always due to the gradient reversal preceding the flux
reversal

* At Sagebrush, CG behavior is the same as Playa’s above 10 m and the opposite
below 5 m

e Reasons for the differing near-surface behavior will be discussed tomorrow.

} Background General CG Behavior CG Behavior = 10 m CG Behavior < 5m



> Background > General CG Behavior > CG Behavior = 10 m > CG Behavior < 5m > Conclusion > 19




H, Estimate

Surface Energy Budget
Rn:H+HL+HG+AHS

Assume: H; = 0,AHs accounted for in H
H=Rn— Hg

2. Hpigyq less important than Hgggeprusn

3. This lends confidence to part | of our
hypothesis. What about cool air mixing
downward?

T{min) T(min)
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Joint Probability D <r<10
Distribution Funct/on @ g

For Sagebrush ol
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(a) Convective conditions with H > 0 S 0r- -
E —0.5
(b) Bifurcation occurs between H > 0 and H < 0,
Quadrant lllwins = H > 0 1
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w' is very small indicating viscosity, thermal |
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diffusivity are important

(d) Vertical mixing remains small, flux is very weakly |
negative = 05}
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Conclusions

* Counter-gradient heat fluxes occur due to the flux reversal preceding the local
gradient reversal and vice versa

* At Playa, CG behavior is always due to the gradient reversal preceding the flux
reversal

* At Sagebrush, CG behavior is the same as Playa’s above 10 m and the opposite
below 5 m

* CG behavior above 5 m due to non-local effects
* CG behavior below 5 m at Sagebrush is primarily surface driven
* CG behavior below 5 m at Playa is primarily driven from aloft

e An LES Study is needed for added clarity
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