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Abstract. Data analysis applications typically aggregate data across many dimensions looking for anomalies
or unusual patterns. The SQL aggregate functions and theGROUP BYoperator produce zero-dimensional or
one-dimensional aggregates. Applications need theN-dimensional generalization of these operators. This paper
defines that operator, called thedata cubeor simplycube. The cube operator generalizes the histogram, cross-
tabulation, roll-up, drill-down, and sub-total constructs found in most report writers. The novelty is that cubes
are relations. Consequently, the cube operator can be imbedded in more complex non-procedural data analysis
programs. The cube operator treats each of theN aggregation attributes as a dimension ofN-space. The aggregate
of a particular set of attribute values is a point in this space. The set of points forms anN-dimensional cube.
Super-aggregates are computed by aggregating theN-cube to lower dimensional spaces. This paper (1) explains
the cube and roll-up operators, (2) shows how they fit in SQL, (3) explains how users can define new aggregate
functions for cubes, and (4) discusses efficient techniques to compute the cube. Many of these features are being
added to the SQL Standard.
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1. Introduction

Data analysis applications look for unusual patterns in data. They categorize data values and
trends, extract statistical information, and then contrast one category with another. There
are four steps to such data analysis:

formulating a query that extracts relevant data from a large database,
extracting the aggregated data from the database into a file or table,

∗An extended abstract of this paper appeared in Gray et al. (1996).
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visualizing the results in a graphical way, and
analyzing the results and formulating a new query.

Visualization tools display data trends, clusters, and differences. Some of the most
exciting work in visualization focuses on presenting new graphical metaphors that allow
people to discover data trends and anomalies. Many of these visualization and data analysis
tools represent the dataset as anN-dimensional space. Visualization tools render two and
three-dimensional sub-slabs of this space as 2D or 3D objects.

Color and time (motion) add two more dimensions to the display giving the potential for
a 5D display. A spreadsheet application such as Excel is an example of a data visualiza-
tion/analysis tool that is used widely. Data analysis tools often try to identify a subspace of
the N-dimensional space which is “interesting” (e.g., discriminating attributes of the data
set).

Thus, visualization as well as data analysis tools do “dimensionality reduction”, often
by summarizing data along the dimensions that are left out. For example, in trying to
analyze car sales, we might focus on the role of model, year and color of the cars in sale.
Thus, we ignore the differences between two sales along the dimensions of date of sale or
dealership but analyze the totals sale for cars by model, by year and by color only. Along
with summarization and dimensionality reduction, data analysis applications extensively
use constructs such as histogram, cross-tabulation, subtotals, roll-up and drill-down.

This paper examines how a relational engine can support efficient extraction of infor-
mation from a SQL database that matches the above requirements of the visualization and
data analysis. We begin by discussing the relevant features in Standard SQL and some
vendor-specific SQL extensions. Section 2 discusses whyGROUP BYfails to adequately
address the requirements. TheCUBEand theROLLUPoperators are introduced in Section 3
and we also discuss how these operators overcome some of the shortcomings ofGROUP
BY. Sections 4 and 5 discuss how we can address and compute the Cube.

Figure 1. Data analysis tools facilitate the Extract-Visualize-Analyze loop. The cube and roll-up operators along
with system and user-defined aggregates are part of the extraction process.
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Table 1.

Weather

Altitude Temp. Pres.
Time (UCT) Latitude Longitude (m) (c) (mb)

96/6/1:1500 37:58:33N 122:45:28W 102 21 1009

Many more rows like the ones above and below

96/6/7:1500 34:16:18N 27:05:55W 10 23 1024

1.1. Relational and SQL data extraction

How do traditional relational databases fit into this multi-dimensional data analysis picture?
How can 2D flat files (SQL tables) model anN-dimensional problem? Furthermore, how
do the relational systems support operations overN-dimensional representations that are
central to visualization and data analysis programs?

We address two issues in this section. The answer to the first question is that relational
systems modelN-dimensional data as a relation withN-attribute domains. For example,
4-dimensional (4D) earth temperature data is typically represented by aWeather table
(Table 1). The first four columns represent the four dimensions: latitude, longitude, altitude,
and time. Additional columns represent measurements at the 4D points such as temperature,
pressure, humidity, and wind velocity. Each individual weather measurement is recorded
as a new row of this table. Often these measured values are aggregates over time (the hour)
or space (a measurement area centered on the point).

As mentioned in the introduction, visualization and data analysis tools extensively use di-
mensionality reduction (aggregation) for better comprehensibility. Often data along the other
dimensions that are not included in a “2-D” representation are summarized via aggregation
in the form of histogram, cross-tabulation, subtotals etc. In the SQL Standard, we depend
on aggregate functions and theGROUP BYoperator to support aggregation.

The SQL standard (IS 9075 International Standard for Database Language SQL, 1992)
provides five functions to aggregate the values in a table:COUNT(), SUM(), MIN(),
MAX(),andAVG( ). For example, the average of all measured temperatures is expressed as:

SELECT AVG(Temp)
FROM Weather;

In addition, SQL allows aggregation over distinct values. The following query counts
the distinct number of reporting times in theWeather table:

SELECT COUNT(DISTINCT Time )
FROM Weather;

Aggregate functions return a single value. Using theGROUP BYconstruct, SQL can also
create a table of many aggregate values indexed by a set of attributes. For example, the
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Figure 2. TheGROUP BYrelational operator partitions a table into groups. Each group is then aggregated by a
function. The aggregation function summarizes some column of groups returning a value for each group.

following query reports the average temperature for each reporting time and altitude:

SELECT Time, Altitude , AVG(Temp)
FROM Weather
GROUP BY Time, Altitude ;

GROUP BYis an unusual relational operator: It partitions the relation into disjoint tuple
sets and then aggregates over each set as illustrated in figure 2.

SQL’s aggregation functions are widely used in database applications. This popularity is
reflected in the presence of aggregates in a large number of queries in the decision-support
benchmark TPC-D (The Benchmark Handbook for Database and Transaction Processing
Systems, 1993). The TPC-D query set has one 6DGROUP BYand three 3DGROUP BYs.
One and two dimensionalGROUP BYs are the most common. Surprisingly, aggregates ap-
pear in the TPC online-transaction processing benchmarks as well (TPC-A, B and C). Table 2
shows how frequently the database and transaction processing benchmarks use aggregation
andGROUP BY. A detailed description of these benchmarks is beyond the scope of the paper
(see (Gray, 1991) and (The Benchmark Handbook for Database and Transaction Processing
Systems, 1993).

Table 2. SQL aggregates in standard benchmarks.

Benchmark Queries Aggregates GROUP BYs

TPC-A, B 1 0 0

TPC-C 18 4 0

TPC-D 16 27 15

Wisconsin 18 3 2

AS3AP 23 20 2

SetQuery 7 5 1

1.2. Extensions in some SQL systems

Beyond the five standard aggregate functions defined so far, many SQL systems add sta-
tistical functions (median, standard deviation, variance, etc.), physical functions (center of



          

P1: RPS/ASH P2: RPS

Data Mining and Knowledge Discovery KL411-02-Gray March 5, 1997 16:21

DATA CUBE: A RELATIONAL AGGREGATION OPERATOR 33

mass, angular momentum, etc.), financial analysis (volatility, Alpha, Beta, etc.), and other
domain-specific functions.

Some systems allow users to add new aggregation functions. The Informix Illustra
system, for example, allows users to add aggregate functions by adding a program with the
following three callbacks to the database system (DataBlade Developer’s Kit):

Init (&handle ): Allocates the handle and initializes the aggregate computation.
Iter (&handle , value ): Aggregates the next value into the current aggregate.
value = Final (&handle ): Computes and returns the resulting aggregate by using data

saved in the handle. This invocation deallocates the handle.

Consider implementing theAverage () function. Thehandle stores thecount and
thesum initialized tozero . When passed a new non-null value,Iter () increments the
count and adds thesum to the value. TheFinal () call deallocates thehandle and returns
sum divided bycount . IBM’s DB2 Common Server (Chamberlin, 1996) has a similar
mechanism. This design has been added to the Draft Proposed standard for SQL (1997).

Red Brick systems, one of the larger UNIX OLAP vendors, adds some interesting ag-
gregate functions that enhance theGROUP BYmechanism (RISQL Reference Guide, Red
Brick Warehouse VPT, 1994):

Rank(expression ): Returns the expressions rank in the set of all values of this domain
of the table. If there areN values in the column, and this is the highest value, the rank
is N, if it is the lowest value the rank is 1.

N_tile (expression , n): The range of the expression (over all the input values of the
table) is computed and divided inton value ranges of approximately equal population. The
function returns the number of the range containing the expression’s value. If your bank
account was among the largest 10% then yourrank (account .balance ,10) would
return 10. Red Brick provides justN_tile (expression ,3).

Ratio _To_Total (expression ): Sums all the expressions. Then for each instance,
divides the expression instance by the total sum.

To give an example, the following SQL statement

SELECT Percentile , MIN(Temp), MAX(Temp)
FROM Weather
GROUP BY N_tile (Temp,10) as Percentile
HAVING Percentile = 5;

returns one row giving the minimum and maximum temperatures of the middle 10% of all
temperatures.

Red Brick also offers threecumulative aggregatesthat operate on ordered tables.

Cumulative (expression ): Sums all values so far in an ordered list.
Running _Sum(expression ,n): Sums the most recentn values in an ordered list. The

initial n-1 values areNULL.
Running _Average (expression ,n):Averages the most recentn values in an ordered

list. The initialn-1 values areNULL.
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These aggregate functions are optionally reset each time a grouping value changes in an
ordered selection.

2. Problems withGROUP BY

Certain common forms of data analysis are difficult with these SQL aggregation constructs.
As explained next, three common problems are: (1) Histograms, (2) Roll-up Totals and
Sub-Totals for drill-downs, (3) Cross Tabulations.

The standard SQLGROUP BYoperator does not allow a direct construction ofhistograms
(aggregation over computed categories). For example, for queries based on theWeather
table, it would be nice to be able to group times into days, weeks, or months, and to group
locations into areas (e.g., US, Canada, Europe,...). If aNation () function maps latitude
and longitude into the name of the country containing that location, then the following
query would give the daily maximum reported temperature for each nation.

SELECT day, nation , MAX(Temp)
FROM Weather
GROUP BY Day(Time ) AS day,

Nation (Latitude , Longitude ) AS nation ;

Some SQL systems support histograms directly but the standard does not1. In standard
SQL, histograms are computed indirectly from a table-valued expression which is then
aggregated. The following statement demonstrates this SQL92 construct using nested
queries.

SELECT day, nation , MAX(Temp)
FROM(SELECT Day(Time ) AS day,

Nation (Latitude , Longitude ) AS nation ,
Temp

FROM Weather
) AS foo

GROUP BY day, nation ;

A more serious problem, and the main focus of this paper, relates to roll-ups using totals
and sub-totals for drill-down reports. Reports commonly aggregate data at a coarse level,
and then at successively finer levels. The car sales report in Table 3 shows the idea (this
and other examples are based on the sales summary data in the table in figure 4). Data
is aggregated by Model, then by Year, then by Color. The report shows data aggregated
at three levels. Going up the levels is calledrolling-up the data. Going down is called
drilling-down into the data. Data aggregated at each distinct level produces a sub-total.

Table 3a suggests creating 2N aggregation columns for a roll-up ofN elements. Indeed,
Chris Date recommends this approach (Date, 1996). His design gives rise to Table 3b.

The representation of Table 3a is not relational because the empty cells (presumably
NULLvalues), cannot form a key. Representation 3b is an elegant solution to this problem,
but we rejected it because it implies enormous numbers of domains in the resulting tables.
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Table 3a. Sales Roll Up by Model by Year by Color.

Sales
by Model Sales
by Year by Model Sales

Model Year Color by Color by Year by Model

Chevy 1994 Black 50

White 40

90

1995 Black 85

White 115

200

290

Table 3b. Sales Roll-Up by Model by Year by Color as recommended by Chris Date (Date, 1996).

Sales
by Model Sales

Model Year Color Sales by Year by Model

Chevy 1994 Black 50 90 290

Chevy 1994 White 40 90 290

Chevy 1995 Black 85 200 290

Chevy 1995 White 115 200 290

Table 4. An Excel pivot table representation of Table 3 with Ford sales data included.

Year/Color

1994 1995Sum
sales

Model Black White
1994
total Black White

1995
total

Grand
total

Chevy 50 40 90 85 115 200 290
Ford 50 10 60 85 75 160 220
Grand total 100 50 150 170 190 360 510

We were intimidated by the prospect of adding 64 columns to the answer set of a 6D TPCD
query. The representation of Table 3b is also not convenient—the number of columns grows
as the power set of the number of aggregated attributes, creating difficult naming problems
and very long names. The approach recommended by Date is reminiscent of pivot tables
found in Excel (and now all other spreadsheets) (Microsoft Excel, 1995), a popular data
analysis feature of Excel2.

Table 4 an alternative representation of Table 3a (with Ford Sales data included) that
illustrates how a pivot table in Excel can present the Sales data by Model, by Year, and then
by Color. The pivot operator transposes a spreadsheet: typically aggregating cells based on
values in the cells. Rather than just creating columns based on subsets of column names,
pivot creates columns based on subsets of columnvalues. This is amuchlarger set. If one



          

P1: RPS/ASH P2: RPS

Data Mining and Knowledge Discovery KL411-02-Gray March 5, 1997 16:21

36 GRAY ET AL.

pivots on two columns containingN and M values, the resulting pivot table hasN × M
values. We cringe at the prospect of so many columns and such obtuse column names.

Rather than extend the result table to have many new columns, a more conservative ap-
proach prevents the exponential growth of columns by overloading column values. The idea
is to introduce an ALL value. Table 5a demonstrates this relational and more convenient rep-
resentation. The dummy value “ALL” has been added to fill in the super-aggregation items:

Table 5a is not really a completely new representation or operation. Since Table 5a is a
relation, it is not surprising that it can be built using standard SQL. The SQL statement to
build thisSalesSummary table from the rawSales data is:

SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(Sales)
FROM Sales
WHERE Model= ‘Chevy’

UNION
SELECT Model, ‘ALL’, ‘ALL’, SUM(Sales)

FROM Sales
WHERE Model= ‘Chevy’
GROUP BY Model

UNION
SELECT Model, Year , ‘ALL’, SUM(Sales)

FROM Sales
WHERE Model= ‘Chevy’
GROUP BY Model, Year

UNION
SELECT Model, Year , Color , SUM(Sales)

FROM Sales
WHERE Model= ‘Chevy’
GROUP BY Model, Year , Color ;

This is a simple 3-dimensional roll-up. Aggregating overN dimensions requiresN such
unions.

Table 5a. Sales summary.

Model Year Color Units

Chevy 1994 Black 50

Chevy 1994 White 40

Chevy 1994 ALL 90

Chevy 1995 Black 85

Chevy 1995 White 115

Chevy 1995 ALL 200

Chevy ALL ALL 290
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Roll-up is asymmetric—notice that Table 5a aggregates sales by year but not by color.
These missing rows are shown in Table 5b.

Table 5b. Sales summary rows missing form Table 5a to convert the roll-up into a cube.

Model Year Color Units

Chevy ALL Black 135

Chevy ALL White 155

These additional rows could be captured by adding the following clause to the SQL
statement above:

UNION
SELECT Model, ‘ALL’, Color , SUM(Sales )

FROM Sales
WHERE Model= ‘Chevy’
GROUP BY Model, Color ;

The symmetric aggregation result is a table called across-tabulation, or cross tabfor
short. Tables 5a and 5b are the relational form of the crosstabs, but crosstab data is routinely
displayed in the more compact format of Table 6.

This cross tab is a two-dimensional aggregation. If other automobile models are added,
it becomes a 3D aggregation. For example, data for Ford products adds an additional cross
tab plane.

The cross-tab-array representation (Tables 6a and b) is equivalent to the relational repre-
sentation using theALL value. Both generalize to anN-dimensional cross tab. Most report
writers build in a cross-tabs feature, building the report up from the underlying tabular
data such as Table 5. See for example theTRANSFORM-PIVOToperator of Microsoft Ac-
cess (Microsoft Access Relational Database Management System for Windows, Language
Reference, 1994).

Table 6a. Chevy sales cross tab.

Chevy 1994 1995 Total (ALL)

Black 50 85 135

White 40 115 155

Total (ALL) 90 200 290

Table 6b. Ford sales cross tab.

Ford 1994 1995 Total (ALL)

Black 50 85 135

White 10 75 85

Total (ALL) 60 160 220
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The representation suggested by Table 5 and unionedGROUP BYs “solve” the problem of
representing aggregate data in a relational data model. The problem remains that expressing
roll-up, and cross-tab queries with conventional SQL is daunting. A six dimension cross-
tab requires a 64-way union of 64 differentGROUP BYoperators to build the underlying
representation.

There is another very important reason why it is inadequate to use GROUP BYs. The
resulting representation of aggregation is too complex to analyze for optimization. On most
SQL systems this will result in 64 scans of the data, 64 sorts or hashes, and a long wait.

3. CUBE and ROLLUP operators

The generalization of group by, roll-up and cross-tab ideas seems obvious: Figure 3 shows
the concept for aggregation up to 3-dimensions. The traditionalGROUP BYgenerates the
N-dimensional data cubecore. TheN − 1 lower-dimensional aggregates appear as points,
lines, planes, cubes, or hyper-cubes hanging off the data cube core.

The data cube operator builds a table containing all these aggregate values. The total
aggregate using functionf () is represented as the tuple:

ALL, ALL, ALL, . . . , ALL, f (*)

Points in higher dimensional planes or cubes have fewerALL values.

Figure 3. TheCUBEoperator is theN-dimensional generalization of simple aggregate functions. The 0D data
cube is a point. The 1D data cube is a line with a point. The 2D data cube is a cross tabulation, a plane, two lines,
and a point. The 3D data cube is a cube with three intersecting 2D cross tabs.
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Figure 4. A 3D data cube (right) built from the table at the left by theCUBEstatement at the top of the figure.

Creating a data cube requires generating the power set (set of all subsets) of the aggrega-
tion columns. Since theCUBEis an aggregation operation, it makes sense to externalize it
by overloading the SQLGROUP BYoperator. In fact, the cube is a relational operator, with
GROUP BY and ROLL UP as degenerate forms of the operator. This can be conveniently
specified by overloading the SQLGROUP BY3.

Figure 4 has an example of the cube syntax. To give another, here follows a statement to
aggregate the set of temperature observations:

SELECT day, nation , MAX(Temp)
FROM Weather
GROUP BY CUBE

Day(Time ) AS day,
Country (Latitude , Longitude )

AS nation ;

The semantics of theCUBEoperator are that it first aggregates over all the<select
list > attributes in theGROUP BYclause as in a standardGROUP BY. Then, itUNIONs
in each super-aggregate of the global cube—substitutingALL for the aggregation columns.
If there areN attributes in the<select list >, there will be 2N − 1 super-aggregate
values. If the cardinality of theN attributes areC1, C2, . . . , CN then the cardinality of the
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resulting cube relation is5(Ci + 1). The extra value in each domain isALL. For example,
the SALES table has 2× 3× 3 = 18 rows, while the derived data cube has 3× 4× 4 = 48
rows.

If the application wants only a roll-up or drill-down report, similar to the data in Table 3a,
the full cube is overkill. Indeed, some parts of the full cube may be meaningless. If the
answer set is not is not normalized, there may be functional dependencies among columns.
For example, a date functionally defines a week, month, and year. Roll-ups by year, week,
day are common, but a cube on these three attributes would be meaningless.

The solution is to offerROLLUPin addition toCUBE. ROLLUPproduces just the super-
aggregates:

(v1 ,v2 ,...,vn, f ()),
(v1 ,v2 ,...,ALL, f ()),

...
(v1 ,ALL,...,ALL, f ()),
(ALL,ALL,...,ALL, f ()).

Cumulative aggregates, like running sum or running average, work especially well with
ROLLUPbecause the answer set is naturally sequential (linear) while thefull data
cube is naturally non-linear (multi-dimensional).ROLLUPandCUBEmust be ordered for
cumulative operators to apply.

We investigated letting the programmer specify the exact list of super-aggregates but
encountered complexities related to collation, correlation, and expressions. We believe
ROLLUPandCUBEwill serve the needs of most applications.

3.1. The GROUP, CUBE, ROLLUP algebra

TheGROUP BY, ROLLUP, andCUBEoperators have an interesting algebra. TheCUBEof a
ROLLUPor GROUP BYis aCUBE. TheROLLUPof aGROUP BYis aROLLUP. Algebraically,
this operator algebra can be stated as:

CUBE(ROLLUP) = CUBE
ROLLUP(GROUP BY) = ROLLUP

So it makes sense to arrange the aggregation operators in the compound order where the
“most powerful” cube operator at the core, then a roll-up of the cubes and then a group by
of the roll-ups. Of course, one can use any subset of the three operators:

GROUP BY<select list >
ROLLUP <select list >

CUBE <select list >

The following SQL demonstrates a compound aggregate. The “shape” of the answer is
diagrammed in figure 5:



         

P1: RPS/ASH P2: RPS

Data Mining and Knowledge Discovery KL411-02-Gray March 5, 1997 16:21

DATA CUBE: A RELATIONAL AGGREGATION OPERATOR 41

Figure 5. The combination of aGROUP BYon Manufacture,ROLLUPon year, month, day, andCUBEon some
attributes. The aggregate values are the contents of the cube.

SELECT Manufacturer , Year , Month , Day, Color , Model ,
SUM(price ) AS Revenue

FROM Sales
GROUP BY Manufacturer ,

ROLLUP Year(Time ) AS Year,
Month (Time ) AS Month,
Day(Time ) AS Day,

CUBE Color , Model ;

3.2. A syntax proposal

With these concepts in place, the syntactic extension to SQL is fairly easily defined. The
current SQLGROUP BYsyntax is:

GROUP BY
{<column name > [collate clause ] ,...}

To support histograms and other function-valued aggregations, we first extend theGROUP
BYsyntax to:

GROUP BY<aggregation list >
<aggregation list > ::=

{ ( <column name > | <expression > )
[ AS <correlation name > ]
[ <collate clause > ]
,...}

These extensions are independent of theCUBEoperator. They remedy some pre-existing
problems withGROUP BY. Many systems already allow these extensions.



         

P1: RPS/ASH P2: RPS

Data Mining and Knowledge Discovery KL411-02-Gray March 5, 1997 16:21

42 GRAY ET AL.

Now extend SQL’sGROUP BYoperator:

GROUP BY[ <aggregation list > ]
[ ROLLUP <aggregation list > ]

[ CUBE <aggregation list > ]

3.3. A discussion of the ALL value

Is theALL value really needed? EachALL value really represents a set—the set over which
the aggregate was computed4. In the Table 5SalesSummary data cube, the respective
sets are:

Model .ALL = ALL(Model ) = {Chevy, Ford }
Year .ALL = ALL(Year ) = {1990 ,1991 ,1992 }
Color .ALL = ALL(Color ) = {red ,white ,blue }

In reality, we have stumbled in to the world of nested relations—relations can be values.
This is a major step for relational systems. There is much debate on how to proceed. In this
section, we briefly discuss the semantics ofALL in the context of SQL. This design may be
eased by SQL3’s support for set-valued variables and domains.

We can interpret eachALL value as a context-sensitive token representing the set it
represents. Thinking of theALL value as the corresponding set defines the semantics of the
relational operators (e.g.,equals andIN ). A functionALL() generates the set associated
with this value as in the examples above.ALL() applied to any other value returns NULL.

The introduction of ALL creates substantial complexity. We do not add it lightly—adding
it touches many aspects of the SQL language. To name a few:

• ALL becomes a new keyword denoting the set value.
• ALL [NOT] ALLOWEDis added to the column definition syntax and to the column

attributes in the system catalogs.
• The set interpretation guides the meaning of the relational operators{=, IN }.

There are more such rules, but this gives a hint of the added complexity. As an aside, to
be consistent, ifALL represents a set then the other values of that domain must be treated
as singleton sets in order to have uniform operators on the domain.

It is convenient to know when a column value is an aggregate. One way to test this is
to apply theALL() function to the value and test for a non-NULLvalue. This is so useful
that we propose a Boolean functionGROUPING() that, given a select list element, returns
TRUEif the element is anALL value, andFALSEotherwise.

3.4. Avoiding the ALL value

Veteran SQL implementers will be terrified of the ALL value—like NULL, it will create
many special cases. Furthermore, the proposal in Section 3.3. requires understanding of
sets as values. If the goal is to help report writer and GUI visualization software, then it
may be simpler to adopt the following approach5:
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• Use theNULLvalue in place of theALL value.
• Do not implement theALL() function.
• Implement theGROUPING() function to discriminate betweenNULLandALL.

In this minimalist design, tools and users can simulate theALL value as by for example:

SELECT Model,Year ,Color ,SUM(sales ),
GROUPING(Model ),
GROUPING(Year ),
GROUPING(Color )

FROM Sales
GROUP BY CUBE Model, Year , Color ;

Wherever theALL value appeared before, now the corresponding value will beNULL in the
data field andTRUEin the corresponding grouping field. For example, the global sum of
figure 4 will be the tuple:

(NULL,NULL,NULL,941,TRUE,TRUE,TRUE)

rather than the tuple one would get with the “real” cube operator:

(ALL, ALL, ALL, 941).

Using the limited interpretation ofALL as above excludes expressing some meaningful
queries ( just as traditional relational model makes it hard to handle disjunctive information).
However, the proposal makes it possible to express results ofCUBEas a single relation in
the current framework of SQL.

3.5. Decorations

The next step is to allowdecorations, columns that do not appear in theGROUP BYbut that
are functionally dependent on the grouping columns. Consider the example:

SELECT department .name, sum(sales )
FROM sales JOIN department USING (department _number )
GROUP BY sales.department _number ;

Thedepartment .name column in the answer set is not allowed in current SQL, since
it is neither an aggregation column (appearing in theGROUP BYlist) nor is it an aggregate.
It is just there to decorate the answer set with the name of the department. We recommend
the rule thatif a decorationcolumn (or column value) is functionally dependent on the
aggregation columns, then it may be included in theSELECTanswer list.

Decoration’s interact with aggregate values. If the aggregate tuple functionally defines
the decoration value, then the value appears in the resulting tuple. Otherwise the decoration
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field is NULL. For example, in the following query thecontinent is not specified unless
nation is.

SELECT day,nation ,MAX(Temp),
continent (nation ) AS continent

FROM Weather
GROUP BY CUBE

Day(Time ) AS day,
Country (Latitude , Longitude )

AS nation

The query would produce the sample tuples:

Table 7. Demonstrating decorations and ALL.

day nation max (temp ) continent

25/1/1995 USA 28 North America

ALL USA 37 North America

25/1/1995 ALL 41 NULL

ALL ALL 48 NULL

3.6. Dimensions star, and snowflake queries

While strictly not part of theCUBEandROLLUPoperator design, there is an important
database design concept that facilitates the use of aggregation operations. It is common to
record events and activities with a detailed record giving all thedimensionsof the event.
For example, the sales item record in figure 6 gives the id of the buyer, seller, the product
purchased, the units purchased, the price, the date and the sales office that is credited with
the sale. There are probably many more dimensions about this sale, but this example gives
the idea.

Figure 6. A snowflake schema showing the core fact table and some of the many aggregation granularities of
the core dimensions.
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There are side tables that for each dimension value give its attributes. For example,
the San Francisco sales office is in the Northern California District, the Western Region,
and the US Geography. This fact would be stored in a dimension table for the Office6.
The dimension table may also have decorations describing other attributes of that Office.
These dimension tables define a spectrum of aggregation granularities for the dimension.
Analysists might want to cube various dimensions and then aggregate or roll-up the cube
up at any or all of these granularities.

The general schema of figure 6 is so common that it has been given a name: asnowflake
schema. Simpler schemas that have a single dimension table for each dimension are called a
star schema. Queries against these schemas are calledsnowflake queriesandstar queries
respectively.

The diagram of figure 6 suggests that the granularities form a pure hierarchy. In reality,
the granularities typically form a lattice. To take just a very simple example, days nest in
weeks but weeks do not nest in months or quarters or years (some weeks are partly in two
years). Analysts often think of dates in terms of weekdays, weekends, sale days, various
holidays (e.g., Christmas and the time leading up to it). So a fuller granularity graph of
figure 6 would be quite complex. Fortunately, graphical tools like pivot tables with pull
down lists of categories hide much of this complexity from the analyst.

4. Addressing the data cube

Section 5 discusses how to compute data cubes and how users can add new aggregate
operators. This section considers extensions to SQL syntax to easily access the elements
of a data cube—making it recursive and allowing aggregates to reference sub-aggregates.

It is not clear where to draw the line between the reporting-visualization tool and the
query tool. Ideally, application designers should be able to decide how to split the function
between the query system and the visualization tool. Given that perspective, the SQL
system must be a Turing-complete programming environment.

SQL3 defines a Turing-complete procedural programming language. So, anything is
possible. But, many things are not easy. Our task is to make simple and common things easy.

The most common request is for percent-of-total as an aggregate function. In SQL this
is computed as a nested SELECT SQL statements.

SELECT Model,Year ,Color ,SUM(Sales ),
SUM(Sales )/

(SELECT SUM(Sales)
FROM Sales

WHERE Model IN {‘Ford ’,‘Chevy’}
AND Year BETWEEN 1990 AND 1992

)
FROM Sales
WHERE Model IN { ‘Ford ’, ‘Chevy’ }

AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE Model, Year , Color ;
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It seems natural to allow the shorthand syntax to name the global aggregate:

SELECT Model, Year , Color
SUM(Sales ) AS total ,

SUM(Sales ) / total (ALL,ALL,ALL)
FROM Sales
WHERE Model IN {‘Ford ’, ‘Chevy’}

AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE Model, Year , Color ;

This leads into deeper water. The next step is a desire to compute theindexof a value—an
indication of how far the value is from the expected value. In a set ofN values, one expects
each item to contribute oneNth to the sum. So the 1D index of a set of values is:

index(vi ) = vi /(6 j v j )

If the value set is two dimensional, this commonly used financial function is a nightmare
of indices. It is best described in a programming language. The current approach to
selecting a field value from a 2Dcube would read as:

SELECT v
FROM cube
WHERE row = :i

AND column = :j

We recommend the simpler syntax:

cube .v(:i , :j )

as a shorthand for the above selection expression. With this notation added to the SQL
programming language, it should be fairly easy to compute super-super-aggregates from
the base cube.

5. Computing cubes and roll-ups

CUBEandROLLUPgeneralize aggregates andGROUP BY, so all the technology for com-
puting those results also apply to computing the core of the cube (Graefe, 1993). The basic
technique for computing aROLLUPis to sort the table on the aggregating attributes and
then compute the aggregate functions (there is a more detailed discussion of the kind of
aggregates in a moment.) If theROLLUPresult is small enough to fit in main memory,
it can be computed by scanning the input set and applying each record to the in-memory
ROLLUP. A cube is the union of many rollups, so the naive algorithm computes this union.

As Graefe (1993) points out, the basic techniques for computing aggregates are:

• To minimize data movement and consequent processing cost, compute aggregates at the
lowest possible system level.
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• If possible, use arrays or hashing to organize the aggregation columns in memory, storing
one aggregate value for each array or hash entry.

• If the aggregation values are large strings, it may be wise to keep a hashed symbol table
that maps each string to an integer so that the aggregate values are small. When a new
value appears, it is assigned a new integer. With this organization, the values become
dense and the aggregates can be stored as anN-dimensional array.

• If the number of aggregates is too large to fit in memory, use sorting or hybrid hashing to
organize the data by value and then aggregate with a sequential scan of the sorted data.

• If the source data spans many disks or nodes, use parallelism to aggregate each partition
and then coalesce these aggregates.

Some innovation is needed to compute the‘‘ALL’’ tuples of the cube and roll-up from
theGROUP BYcore. TheALL value adds one extra value to each dimension in theCUBE.
So, anN-dimensional cube ofN attributes each with cardinalityCi , will have5(Ci + 1)
values. If eachCi = 4 then a 4DCUBEis 2.4 times larger than the baseGROUP BY. We
expect theCi to be large (tens or hundreds) so that theCUBEwill be only a little larger than
theGROUP BY. By comparison, anN-dimensional roll-up will addonly N records to the
answer set.

The cube operator allows many aggregate functions in the aggregation list of theGROUP
BY clause. Assume in this discussion that there is a single aggregate functionF() being
computed on anN-dimensional cube. The extension to computing a list of functions is a
simple generalization.

Figure 7 summarizes how aggregate functions are defined and implemented in many
systems. It defines how the database execution engine initializes the aggregate function,
calls the aggregate functions for each new value and then invokes the aggregate function to
get the final value. More sophisticated systems allow the aggregate function to declare a
computation cost so that the query optimizer knows to minimize calls to expensive functions.
This design (except for the cost functions) is now part of the proposed SQL standard.

The simplest algorithm to compute the cube is to allocate a handle for each cube cell.
When a new tuple:(x1, x2, . . . , xN, v) arrives, theIter (handle , v) function is called
2N times—once for each handle of each cell of the cube matching this value. The 2N

comes from the fact that each coordinate can either bexi or ALL. When all the input tuples

Figure 7. System defined and user defined aggregate functions are initialized with a start() call that allocates and
initializes a scratchpad cell to compute the aggregate. Subsequently, the next() call is invoked for each value to be
aggregated. Finally, the end() call computes the aggregate from the scratchpad values, deallocates the scratchpad
and returns the result.
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have been computed, the system invokes thefinal (&handle ) function for each of the
5(Ci +1) nodes in the cube. Call this the2N-algorithm. There is a corresponding order-N
algorithm for roll-up.

If the base table has cardinalityT , the 2N-algorithminvokes theIter () functionT ×2N

times. It is often faster to compute the super-aggregates from the coreGROUP BY, reducing
the number of calls by approximately a factor ofT . It is often possible to compute the cube
from the core or from intermediate results onlyM times larger than the core. The following
trichotomy characterizes the options in computing super-aggregates.

Consider aggregating a two dimensional set of values{Xi j | i = 1, . . . , I ; j = 1, . . . , J}.
Aggregate functions can be classified into three categories:

Distributive: Aggregate functionF() is distributive if there is a functionG() such that
F({Xi, j }) = G({F({Xi, j | i = 1, . . . , I }) | j = 1, . . . J}). COUNT(), MIN(), MAX(),
SUM() are all distributive. In fact,F = G for all but COUNT(). G = SUM() for the
COUNT() function. Once order is imposed, the cumulative aggregate functions also fit
in the distributive class.

Algebraic: Aggregate functionF() is algebraic if there is anM-tuple valued functionG()

and a functionH()such thatF({Xi, j }) = H({G({Xi, j | i = 1, . . . , I }) | j = 1, . . . , J}).
Average(), standard deviation, MaxN(), MinN(), centerof mass() are all algebraic. For
Average, the functionG() records the sum and count of the subset. TheH() function
adds these two components and then divides to produce the global average. Similar
techniques apply to finding theN largest values, the center of mass of group of objects,
and other algebraic functions. The key to algebraic functions is that a fixed size result
(an M-tuple) can summarize the sub-aggregation.

Holistic: Aggregate functionF() is holistic if there is no constant bound on the size of
the storage needed to describe a sub-aggregate. That is, there is no constantM , such
that anM-tuple characterizes the computationF({Xi, j | i = 1, . . . , I }). Median(),
MostFrequent() (also called the Mode()), and Rank() are common examples of holistic
functions.

We know of no more efficient way of computing super-aggregates of holistic functions
than the 2N-algorithm using the standardGROUP BYtechniques. We will not say more
about cubes of holistic functions.

Cubes of distributive functions are relatively easy to compute. Given that the core is
represented as anN-dimensional array in memory, each dimension having sizeCi + 1, the
N − 1 dimensional slabs can be computed by projecting (aggregating) one dimension of
the core. For example the following computation aggregates the first dimension.

CUBE(ALL, x2, . . . , xN) = F({CUBE(i, x2, . . . , xN) | i = 1, . . . C1}).
N such computations compute theN − 1 dimensional super-aggregates. The distributive
nature of the functionF() allows aggregates to be aggregated. The next step is to compute
the next lower dimension—an (...ALL,...,ALL...) case. Thinking in terms of the cross tab,
one has a choice of computing the result by aggregating the lower row, or aggregating the
right column (aggregate (ALL, ∗) or (∗, ALL)). Either approach will give the same answer.
The algorithm will be most efficient if it aggregates the smaller of the two (pick the∗ with
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the smallestCi ). In this way, the super-aggregates can be computed dropping one dimension
at a time.

Algebraic aggregates are more difficult to compute than distributive aggregates. Recall
that an algebraic aggregate saves its computation in a handle and produces a result in the
end—at theFinal () call. Average () for example maintains the count and sum values
in its handle. The super-aggregate needs these intermediate results rather than just the raw
sub-aggregate. An algebraic aggregate must maintain a handle (M-tuple) for each element
of the cube (this is a standard part of the group-by operation). When the coreGROUP
BY operation completes, the CUBE algorithm passes the set of handles to eachN − 1
dimensional super-aggregate. When this is done the handles of these super-aggregates are
passed to the super-super aggregates, and so on until the (ALL, ALL, . . . , ALL) aggregate
has been computed. This approach requires a new call for distributive aggregates:

Iter _super ( &handle , &handle )

which folds the sub-aggregate on the right into the super aggregate on the left. The same
ordering idea (aggregate on the smallest list) applies at each higher aggregation level.

Interestingly, the distributive, algebraic, and holistic taxonomy is very useful in comput-
ing aggregates for parallel database systems. In those systems, aggregates are computed for
each partition of a database in parallel. Then the results of these parallel computations are
combined. The combination step is very similar to the logic and mechanism used in figure 8.

If the data cube does not fit into memory, array techniques do not work. Rather one
must either partition the cube with a hash function or sort it. These are standard techniques
for computing theGROUP BY. The super-aggregates are likely to be orders of magnitude
smaller than the core, so they are very likely to fit in memory. Sorting is especially conve-
nient forROLLUPsince the user often wants the answer set in a sorted order—so the sort
must be done anyway.

It is possible that the core of the cube is sparse. In that case, only the non-null elements
of the core and of the super-aggregates should be represented. This suggests a hashing or a
B-tree be used as the indexing scheme for aggregation values (Method and Apparatus for
Storing and Retrieving Multi-Dimensional Data in Computer Memory, 1994).

6. Maintaining cubes and roll-ups

SQL Server 6.5 has supported the CUBE and ROLLUP operators for about a year now.
We have been surprised that some customers use these operators to compute and store the
cube. These customers then define triggers on the underlying tables so that when the tables
change, the cube is dynamically updated.

This of course raises the question: how can one incrementally compute (user-defined)
aggregate functions after the cube has been materialized? Harinarayn et al. (1996) have
interesting ideas on pre-computing a sub-cubes of the cube assuming all functions are
holistic. Our view is that users avoid holistic functions by using approximation techniques.
Most functions we see in practice are distributive or algebraic. For example, medians
and quartiles are approximated using statistical techniques rather than being computed
exactly.
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Figure 8. (Top) computing the cube with a minimal number of calls to aggregation functions. If the aggregation
operator is algebraic or distributive, then it is possible to compute the core of the cube as usual. (Middle) then,
the higher dimensions of the cube are computed by calling the super-iterator function passing the lower-level
scratch-pads. (Bottom) once anN-dimensional space has been computed, the operation repeats to compute the
N − 1 dimensional space. This repeats untilN = 0.

The discussion of distributive, algebraic, and holistic functions in the previous section
was completely focused on SELECT statements, not on UPDATE, INSERT, or DELETE
statements.

Surprisingly, the issues of maintaining a cube are quite different from computing it in
the first place. To give a simple example: it is easy to compute the maximum value in
a cube—max is a distributive function. It is also easy to propagate inserts into a “max”
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N-dimensional cube. When a record is inserted into the base table, just visit the 2N super-
aggregates of this record in the cube and take the max of the current and new value. This
computation can be shortened—if the new value “loses” one competition, then it will lose
in all lower dimensions. Now suppose a delete or update changes the largest value in the
base table. Then 2N elements of the cube must be recomputed. The recomputation needs
to find the global maximum. This seems to require a recomputation of the entire cube. So,
max is a distributive forSELECTandINSERT, but it is holistic forDELETE.

This simple example suggests that there are orthogonal hierarchies forSELECT, INSERT,
andDELETEfunctions (update is just delete plus insert). If a function is algebraic for insert,
update, and delete (count() and sum() are such a functions), then it is easy to maintain the
cube. If the function is distributive for insert, update, and delete, then by maintaining the
scratchpads for each cell of the cube, it is fairly inexpensive to maintain the cube. If the
function is delete-holistic (as max is) then it is expensive to maintain the cube. These ideas
deserve more study.

7. Summary

The cube operator generalizes and unifies several common and popular concepts:

aggregates,
group by,
histograms,
roll-ups and drill-downs and,
cross tabs.

The cube operator is based on a relational representation of aggregate data using theALL
value to denote the set over which each aggregation is computed. In certain cases it makes
sense to restrict the cube operator to just a roll-up aggregation for drill-down reports.

The data cube is easy to compute for a wide class of functions (distributive and algebraic
functions). SQL’s basic set of five aggregate functions needs careful extension to include
functions such as rank,N tile, cumulative, and percent of total to ease typical data mining
operations. These are easily added to SQL by supporting user-defined aggregates. These ex-
tensions require a new super-aggregate mechanism to allow efficient computation of cubes.
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Notes

1. These criticisms led to a proposal to include these features in the draft SQL standard (ISO/IEC DBL:MCI-006,
1996).

2. It seems likely that a relational pivot operator will appear in database systems in the near future.
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3. An earlier version of this paper (Gray et al., 1996) and the Microsoft SQL Server 6.5 product implemented
a slightly different syntax. They suffix theGROUP BYclause with aROLLUPor CUBEmodifier. The SQL
Standards body chose an infix notation so thatGROUP BYandROLLUPandCUBEcould be mixed in a single
statement. The improved syntax is described here.

4. This is distinct from saying that ALL representsoneof the members of the set.
5. This is the syntax and approach used by Microsoft’s SQL Server (version 6.5).
6. Database normalization rules (Date, 1995) would recommend that the California District be stored once, rather

than storing it once for each Office. So there might be an office, district, and region tables, rather than one big
denormalized table. Query users find it convenient to use the denormalized table.
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