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11.1 INTRODUCTION

Since the early days of mankind the primary motivation for the establishment of
communities has been the idea that by being part of an organized group the capabil-
ities of an individual are improved. The great progress in the area of intercomputer
communication led to the development of means by which stand-alone processing
subsystems can be integrated into multicomputer communities.

– Miron Livny, Study of Load Balancing Algorithms for Decentralized Distributed
Processing Systems, Ph.D. thesis, July 1983.

Ready access to large amounts of computing power has been a persistent goal of com-
puter scientists for decades. Since the 1960s, visions of computing utilities as pervasive
and as simple as the telephone have motivated system designers [1]. It was recognized
in the 1970s that such power could be achieved inexpensively with collections of small
devices rather than expensive single supercomputers. Interest in schemes for managing
distributed processors [2, 3, 4] became so popular that there was even once a minor
controversy over the meaning of the word ‘distributed’ [5].
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As this early work made it clear that distributed computing was feasible, theoretical
researchers began to notice that distributed computing would be difficult. When messages
may be lost, corrupted, or delayed, precise algorithms must be used in order to build
an understandable (if not controllable) system [6, 7, 8, 9]. Such lessons were not lost
on the system designers of the early 1980s. Production systems such as Locus [10] and
Grapevine [11] recognized the fundamental tension between consistency and availability
in the face of failures.

In this environment, the Condor project was born. At the University of Wisconsin,
Miron Livny combined his 1983 doctoral thesis on cooperative processing [12] with the
powerful Crystal Multicomputer [13] designed by DeWitt, Finkel, and Solomon and the
novel Remote UNIX [14] software designed by Litzkow. The result was Condor, a new
system for distributed computing. In contrast to the dominant centralized control model
of the day, Condor was unique in its insistence that every participant in the system remain
free to contribute as much or as little as it cared to.

Modern processing environments that consist of large collections of workstations
interconnected by high capacity network raise the following challenging question:
can we satisfy the needs of users who need extra capacity without lowering the quality
of service experienced by the owners of under utilized workstations? . . . The Condor
scheduling system is our answer to this question.

– Michael Litzkow, Miron Livny, and Matt Mutka, Condor: A Hunter of Idle Work-
stations, IEEE 8th Intl. Conf. on Dist. Comp. Sys., June 1988.

The Condor system soon became a staple of the production-computing environment
at the University of Wisconsin, partially because of its concern for protecting individ-
ual interests [15]. A production setting can be both a curse and a blessing: The Condor
project learned hard lessons as it gained real users. It was soon discovered that inconve-
nienced machine owners would quickly withdraw from the community, so it was decreed
that owners must maintain control of their machines at any cost. A fixed schema for
representing users and machines was in constant change and so led to the development
of a schema-free resource allocation language called ClassAds [16, 17, 18]. It has been
observed [19] that most complex systems struggle through an adolescence of five to seven
years. Condor was no exception.

The most critical support task is responding to those owners of machines who feel
that Condor is in some way interfering with their own use of their machine. Such
complaints must be answered both promptly and diplomatically. Workstation owners
are not used to the concept of somebody else using their machine while they are
away and are in general suspicious of any new software installed on their system.

– Michael Litzkow and Miron Livny, Experience With The Condor Distributed
Batch System, IEEE Workshop on Experimental Dist. Sys., October 1990.

The 1990s saw tremendous growth in the field of distributed computing. Scientific
interests began to recognize that coupled commodity machines were significantly less
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expensive than supercomputers of equivalent power [20]. A wide variety of powerful
batch execution systems such as LoadLeveler [21] (a descendant of Condor), LSF [22],
Maui [23], NQE [24], and PBS [25] spread throughout academia and business. Several
high-profile distributed computing efforts such as SETI@Home and Napster raised the
public consciousness about the power of distributed computing, generating not a little
moral and legal controversy along the way [26, 27]. A vision called grid computing
began to build the case for resource sharing across organizational boundaries [28].

Throughout this period, the Condor project immersed itself in the problems of pro-
duction users. As new programming environments such as PVM [29], MPI [30], and
Java [31] became popular, the project added system support and contributed to standards
development. As scientists grouped themselves into international computing efforts such
as the Grid Physics Network [32] and the Particle Physics Data Grid (PPDG) [33], the
Condor project took part from initial design to end-user support. As new protocols such
as Grid Resource Access and Management (GRAM) [34], Grid Security Infrastructure
(GSI) [35], and GridFTP [36] developed, the project applied them to production systems
and suggested changes based on the experience. Through the years, the Condor project
adapted computing structures to fit changing human communities.

Many previous publications about Condor have described in fine detail the features of
the system. In this chapter, we will lay out a broad history of the Condor project and its
design philosophy. We will describe how this philosophy has led to an organic growth of
computing communities and discuss the planning and the scheduling techniques needed in
such an uncontrolled system. Our insistence on dividing responsibility has led to a unique
model of cooperative computing called split execution. We will conclude by describing
how real users have put Condor to work.

11.2 THE PHILOSOPHY OF FLEXIBILITY
As distributed systems scale to ever-larger sizes, they become more and more difficult to
control or even to describe. International distributed systems are heterogeneous in every
way: they are composed of many types and brands of hardware, they run various oper-
ating systems and applications, they are connected by unreliable networks, they change
configuration constantly as old components become obsolete and new components are
powered on. Most importantly, they have many owners, each with private policies and
requirements that control their participation in the community.

Flexibility is the key to surviving in such a hostile environment. Five admonitions
outline our philosophy of flexibility.

Let communities grow naturally : Humanity has a natural desire to work together on
common problems. Given tools of sufficient power, people will organize the comput-
ing structures that they need. However, human relationships are complex. People invest
their time and resources into many communities with varying degrees. Trust is rarely
complete or symmetric. Communities and contracts are never formalized with the same
level of precision as computer code. Relationships and requirements change over time.
Thus, we aim to build structures that permit but do not require cooperation. Relationships,
obligations, and schemata will develop according to user necessity.
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Plan without being picky : Progress requires optimism. In a community of sufficient size,
there will always be idle resources available to do work. But, there will also always be
resources that are slow, misconfigured, disconnected, or broken. An overdependence on
the correct operation of any remote device is a recipe for disaster. As we design software,
we must spend more time contemplating the consequences of failure than the potential
benefits of success. When failures come our way, we must be prepared to retry or reassign
work as the situation permits.

Leave the owner in control : To attract the maximum number of participants in a com-
munity, the barriers to participation must be low. Users will not donate their property to
the common good unless they maintain some control over how it is used. Therefore, we
must be careful to provide tools for the owner of a resource to set use policies and even
instantly retract it for private use.

Lend and borrow : The Condor project has developed a large body of expertise in dis-
tributed resource management. Countless other practitioners in the field are experts in
related fields such as networking, databases, programming languages, and security. The
Condor project aims to give the research community the benefits of our expertise while
accepting and integrating knowledge and software from other sources.

Understand previous research: We must always be vigilant to understand and apply pre-
vious research in computer science. Our field has developed over many decades and is
known by many overlapping names such as operating systems, distributed computing,
metacomputing, peer-to-peer computing, and grid computing. Each of these emphasizes
a particular aspect of the discipline, but is united by fundamental concepts. If we fail to
understand and apply previous research, we will at best rediscover well-charted shores.
At worst, we will wreck ourselves on well-charted rocks.

11.3 THE CONDOR PROJECT TODAY

At present, the Condor project consists of over 30 faculties, full time staff, graduate and
undergraduate students working at the University of Wisconsin-Madison. Together the
group has over a century of experience in distributed computing concepts and practices,
systems programming and design, and software engineering.

Condor is a multifaceted project engaged in five primary activities.

Research in distributed computing : Our research focus areas and the tools we have pro-
duced, several of which will be explored below and are as follows:

1. Harnessing the power of opportunistic and dedicated resources. (Condor)
2. Job management services for grid applications. (Condor-G, DaPSched)
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3. Fabric management services for grid resources. (Condor, Glide-In, NeST)
4. Resource discovery, monitoring, and management. (ClassAds, Hawkeye)
5. Problem-solving environments. (MW, DAGMan)
6. Distributed I/O technology. (Bypass, PFS, Kangaroo, NeST)

Participation in the scientific community : Condor participates in national and interna-
tional grid research, development, and deployment efforts. The actual development and
deployment activities of the Condor project are a critical ingredient toward its success.
Condor is actively involved in efforts such as the Grid Physics Network (GriPhyN) [32],
the International Virtual Data Grid Laboratory (iVDGL) [37], the Particle Physics Data
Grid (PPDG) [33], the NSF Middleware Initiative (NMI) [38], the TeraGrid [39], and the
NASA Information Power Grid (IPG) [40]. Further, Condor is a founding member in
the National Computational Science Alliance (NCSA) [41] and a close collaborator of
the Globus project [42].

Engineering of complex software: Although a research project, Condor has a significant
software production component. Our software is routinely used in mission-critical settings
by industry, government, and academia. As a result, a portion of the project resembles
a software company. Condor is built every day on multiple platforms, and an automated
regression test suite containing over 200 tests stresses the current release candidate each
night. The project’s code base itself contains nearly a half-million lines, and significant
pieces are closely tied to the underlying operating system. Two versions of the software, a
stable version and a development version, are simultaneously developed in a multiplatform
(Unix and Windows) environment. Within a given stable version, only bug fixes to the
code base are permitted – new functionality must first mature and prove itself within
the development series. Our release procedure makes use of multiple test beds. Early
development releases run on test pools consisting of about a dozen machines; later in
the development cycle, release candidates run on the production UW-Madison pool with
over 1000 machines and dozens of real users. Final release candidates are installed at
collaborator sites and carefully monitored. The goal is that each stable version release
of Condor should be proven to operate in the field before being made available to the
public.

Maintenance of production environments : The Condor project is also responsible for the
Condor installation in the Computer Science Department at the University of Wisconsin-
Madison, which consist of over 1000 CPUs. This installation is also a major compute
resource for the Alliance Partners for Advanced Computational Servers (PACS) [43]. As
such, it delivers compute cycles to scientists across the nation who have been granted
computational resources by the National Science Foundation. In addition, the project
provides consulting and support for other Condor installations at the University and around
the world. Best effort support from the Condor software developers is available at no
charge via ticket-tracked e-mail. Institutions using Condor can also opt for contracted
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support – for a fee, the Condor project will provide priority e-mail and telephone support
with guaranteed turnaround times.

Education of students: Last but not the least, the Condor project trains students to become
computer scientists. Part of this education is immersion in a production system. Students
graduate with the rare experience of having nurtured software from the chalkboard all
the way to the end user. In addition, students participate in the academic community
by designing, performing, writing, and presenting original research. At the time of this
writing, the project employs 20 graduate students including 7 Ph.D. candidates.

11.3.1 The Condor software: Condor and Condor-G

When most people hear the word ‘Condor’, they do not think of the research group and all
of its surrounding activities. Instead, usually what comes to mind is strictly the software
produced by the Condor project: the Condor High Throughput Computing System, often
referred to simply as Condor.

11.3.1.1 Condor: a system for high-throughput computing

Condor is a specialized job and resource management system (RMS) [44] for compute-
intensive jobs. Like other full-featured systems, Condor provides a job management
mechanism, scheduling policy, priority scheme, resource monitoring, and resource man-
agement [45, 46]. Users submit their jobs to Condor, and Condor subsequently chooses
when and where to run them based upon a policy, monitors their progress, and ultimately
informs the user upon completion.

While providing functionality similar to that of a more traditional batch queueing
system, Condor’s novel architecture and unique mechanisms allow it to perform well
in environments in which a traditional RMS is weak – areas such as sustained high-
throughput computing and opportunistic computing. The goal of a high-throughput com-
puting environment [47] is to provide large amounts of fault-tolerant computational power
over prolonged periods of time by effectively utilizing all resources available to the net-
work. The goal of opportunistic computing is the ability to utilize resources whenever they
are available, without requiring 100% availability. The two goals are naturally coupled.
High-throughput computing is most easily achieved through opportunistic means.

Some of the enabling mechanisms of Condor include the following:

• ClassAds: The ClassAd mechanism in Condor provides an extremely flexible and
expressive framework for matching resource requests (e.g. jobs) with resource offers
(e.g. machines). ClassAds allow Condor to adopt to nearly any desired resource uti-
lization policy and to adopt a planning approach when incorporating Grid resources.
We will discuss this approach further in a section below.

• Job checkpoint and migration: With certain types of jobs, Condor can transparently
record a checkpoint and subsequently resume the application from the checkpoint file.
A periodic checkpoint provides a form of fault tolerance and safeguards the accumu-
lated computation time of a job. A checkpoint also permits a job to migrate from
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one machine to another machine, enabling Condor to perform low-penalty preemptive-
resume scheduling [48].

• Remote system calls: When running jobs on remote machines, Condor can often pre-
serve the local execution environment via remote system calls. Remote system calls is
one of Condor’s mobile sandbox mechanisms for redirecting all of a jobs I/O-related
system calls back to the machine that submitted the job. Therefore, users do not need to
make data files available on remote workstations before Condor executes their programs
there, even in the absence of a shared file system.

With these mechanisms, Condor can do more than effectively manage dedicated compute
clusters [45, 46]. Condor can also scavenge and manage wasted CPU power from oth-
erwise idle desktop workstations across an entire organization with minimal effort. For
example, Condor can be configured to run jobs on desktop workstations only when the
keyboard and CPU are idle. If a job is running on a workstation when the user returns
and hits a key, Condor can migrate the job to a different workstation and resume the
job right where it left off. Figure 11.1 shows the large amount of computing capacity
available from idle workstations.

Figure 11.1 The available capacity of the UW-Madison Condor pool in May 2001. Notice that a
significant fraction of the machines were available for batch use, even during the middle of the work
day. This figure was produced with CondorView, an interactive tool for visualizing Condor-managed
resources.
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Moreover, these same mechanisms enable preemptive-resume scheduling of dedi-
cated compute cluster resources. This allows Condor to cleanly support priority-based
scheduling on clusters. When any node in a dedicated cluster is not scheduled to run
a job, Condor can utilize that node in an opportunistic manner – but when a schedule
reservation requires that node again in the future, Condor can preempt any opportunistic
computing job that may have been placed there in the meantime [30]. The end result is
that Condor is used to seamlessly combine all of an organization’s computational power
into one resource.

The first version of Condor was installed as a production system in the UW-Madison
Department of Computer Sciences in 1987 [14]. Today, in our department alone, Condor
manages more than 1000 desktop workstation and compute cluster CPUs. It has become
a critical tool for UW researchers. Hundreds of organizations in industry, government,
and academia are successfully using Condor to establish compute environments ranging
in size from a handful to thousands of workstations.

11.3.1.2 Condor-G: a computation management agent for Grid computing

Condor-G [49] represents the marriage of technologies from the Globus and the Condor
projects. From Globus [50] comes the use of protocols for secure interdomain commu-
nications and standardized access to a variety of remote batch systems. From Condor
comes the user concerns of job submission, job allocation, error recovery, and creation
of a friendly execution environment. The result is very beneficial for the end user, who
is now enabled to utilize large collections of resources that span across multiple domains
as if they all belonged to the personal domain of the user.

Condor technology can exist at both the frontends and backends of a middleware envi-
ronment, as depicted in Figure 11.2. Condor-G can be used as the reliable submission and
job management service for one or more sites, the Condor High Throughput Computing
system can be used as the fabric management service (a grid ‘generator’) for one or

{
{

{Fabric

Grid

User Application, problem solver, ...

Condor (Condor-G) 

Globus toolkit

Condor 

Processing, storage, communication, ...

Figure 11.2 Condor technologies in Grid middleware. Grid middleware consisting of technologies
from both Condor and Globus sit between the user’s environment and the actual fabric (resources).
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more sites, and finally Globus Toolkit services can be used as the bridge between them.
In fact, Figure 11.2 can serve as a simplified diagram for many emerging grids, such as
the USCMS Test bed Grid [51], established for the purpose of high-energy physics event
reconstruction.

Another example is the European Union DataGrid [52] project’s Grid Resource Broker,
which utilizes Condor-G as its job submission service [53].

11.4 A HISTORY OF COMPUTING COMMUNITIES

Over the history of the Condor project, the fundamental structure of the system has
remained constant while its power and functionality has steadily grown. The core com-
ponents, known as the kernel, are shown in Figure 11.3. In this section, we will examine
how a wide variety of computing communities may be constructed with small variations
to the kernel.

Briefly, the kernel works as follows: The user submits jobs to an agent. The agent
is responsible for remembering jobs in persistent storage while finding resources will-
ing to run them. Agents and resources advertise themselves to a matchmaker, which is
responsible for introducing potentially compatible agents and resources. Once introduced,
an agent is responsible for contacting a resource and verifying that the match is still
valid. To actually execute a job, each side must start a new process. At the agent, a
shadow is responsible for providing all of the details necessary to execute a job. At the
resource, a sandbox is responsible for creating a safe execution environment for the job
and protecting the resource from any mischief.

Let us begin by examining how agents, resources, and matchmakers come together to
form Condor pools. Later in this chapter, we will return to examine the other components
of the kernel.

The initial conception of Condor is shown in Figure 11.4. Agents and resources inde-
pendently report information about themselves to a well-known matchmaker, which then

Problem
solver

(DAGMan)
(Master−Worker)

User

Matchmaker
(central manager)

Agent
(schedd)

Shadow
(shadow)

Job

Resource
(startd)

Sandbox
(starter)

Figure 11.3 The Condor Kernel. This figure shows the major processes in a Condor system. The
common generic name for each process is given in large print. In parentheses are the technical
Condor-specific names used in some publications.
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Figure 11.4 A Condor pool ca. 1988. An agent (A) is shown executing a job on a resource
(R) with the help of a matchmaker (M). Step 1: The agent and the resource advertise themselves
to the matchmaker. Step 2: The matchmaker informs the two parties that they are potentially
compatible. Step 3: The agent contacts the resource and executes a job.

makes the same information available to the community. A single machine typically runs
both an agent and a resource daemon and is capable of submitting and executing jobs.
However, agents and resources are logically distinct. A single machine may run either or
both, reflecting the needs of its owner. Furthermore, a machine may run more than one
instance of an agent. Each user sharing a single machine could, for instance, run its own
personal agent. This functionality is enabled by the agent implementation, which does not
use any fixed IP port numbers or require any superuser privileges.

Each of the three parties – agents, resources, and matchmakers – are independent and
individually responsible for enforcing their owner’s policies. The agent enforces the sub-
mitting user’s policies on what resources are trusted and suitable for running jobs. The
resource enforces the machine owner’s policies on what users are to be trusted and ser-
viced. The matchmaker is responsible for enforcing community policies such as admission
control. It may choose to admit or reject participants entirely on the basis of their names
or addresses and may also set global limits such as the fraction of the pool allocable to
any one agent. Each participant is autonomous, but the community as a single entity is
defined by the common selection of a matchmaker.

As the Condor software developed, pools began to sprout up around the world. In the
original design, it was very easy to accomplish resource sharing in the context of one
community. A participant merely had to get in touch with a single matchmaker to consume
or provide resources. However, a user could only participate in one community: that
defined by a matchmaker. Users began to express their need to share across organizational
boundaries.

This observation led to the development of gateway flocking in 1994 [54]. At that
time, there were several hundred workstations at Wisconsin, while tens of workstations
were scattered across several organizations in Europe. Combining all of the machines
into one Condor pool was not a possibility because each organization wished to retain
existing community policies enforced by established matchmakers. Even at the University
of Wisconsin, researchers were unable to share resources between the separate engineering
and computer science pools.

The concept of gateway flocking is shown in Figure 11.5. Here, the structure of two
existing pools is preserved, while two gateway nodes pass information about participants
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Figure 11.5 Gateway flocking ca. 1994. An agent (A) is shown executing a job on a resource
(R) via a gateway (G). Step 1: The agent and resource advertise themselves locally. Step 2: The
gateway forwards the agent’s unsatisfied request to Condor Pool B. Step 3: The matchmaker informs
the two parties that they are potentially compatible. Step 4: The agent contacts the resource and
executes a job via the gateway.

between the two pools. If a gateway detects idle agents or resources in its home pool, it
passes them to its peer, which advertises them in the remote pool, subject to the admission
controls of the remote matchmaker. Gateway flocking is not necessarily bidirectional. A
gateway may be configured with entirely different policies for advertising and accepting
remote participants. Figure 11.6 shows the worldwide Condor flock in 1994.

The primary advantage of gateway flocking is that it is completely transparent to
participants. If the owners of each pool agree on policies for sharing load, then cross-pool
matches will be made without any modification by users. A very large system may be
grown incrementally with administration only required between adjacent pools.

There are also significant limitations to gateway flocking. Because each pool is rep-
resented by a single gateway machine, the accounting of use by individual remote users

Delft

Warsaw

Madison

200 3

3

30

Amsterdam

3
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3

Geneva 10

4Dubna/Berlin

Figure 11.6 Worldwide Condor flock ca. 1994. This is a map of the worldwide Condor flock in
1994. Each dot indicates a complete Condor pool. Numbers indicate the size of each Condor pool.
Lines indicate flocking via gateways. Arrows indicate the direction that jobs may flow.
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is essentially impossible. Most importantly, gateway flocking only allows sharing at the
organizational level – it does not permit an individual user to join multiple communities.
This became a significant limitation as distributed computing became a larger and larger
part of daily production work in scientific and commercial circles. Individual users might
be members of multiple communities and yet not have the power or need to establish a
formal relationship between both communities.

This problem was solved by direct flocking, shown in Figure 11.7. Here, an agent may
simply report itself to multiple matchmakers. Jobs need not be assigned to any individual
community, but may execute in either as resources become available. An agent may still
use either community according to its policy while all participants maintain autonomy as
before.

Both forms of flocking have their uses, and may even be applied at the same time.
Gateway flocking requires agreement at the organizational level, but provides immediate
and transparent benefit to all users. Direct flocking only requires agreement between one
individual and another organization, but accordingly only benefits the user who takes the
initiative.

This is a reasonable trade-off found in everyday life. Consider an agreement between
two airlines to cross-book each other’s flights. This may require years of negotiation,
pages of contracts, and complex compensation schemes to satisfy executives at a high
level. But, once put in place, customers have immediate access to twice as many flights
with no inconvenience. Conversely, an individual may take the initiative to seek ser-
vice from two competing airlines individually. This places an additional burden on the
customer to seek and use multiple services, but requires no Herculean administrative
agreement.

Although gateway flocking was of great use before the development of direct flocking,
it did not survive the evolution of Condor. In addition to the necessary administrative
complexity, it was also technically complex. The gateway participated in every interaction
in the Condor kernel. It had to appear as both an agent and a resource, communicate
with the matchmaker, and provide tunneling for the interaction between shadows and
sandboxes. Any change to the protocol between any two components required a change
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Figure 11.7 Direct flocking ca. 1998. An agent (A) is shown executing a job on a resource (R) via
direct flocking. Step 1: The agent and the resource advertise themselves locally. Step 2: The agent
is unsatisfied, so it also advertises itself to Condor Pool B. Step 3: The matchmaker (M) informs
the two parties that they are potentially compatible. Step 4: The agent contacts the resource and
executes a job.
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to the gateway. Direct flocking, although less powerful, was much simpler to build and
much easier for users to understand and deploy.

About 1998, a vision of a worldwide computational Grid began to grow [28]. A signifi-
cant early piece in the Grid computing vision was a uniform interface for batch execution.
The Globus Project [50] designed the GRAM protocol [34] to fill this need. GRAM pro-
vides an abstraction for remote process queuing and execution with several powerful
features such as strong security and file transfer. The Globus Project provides a server
that speaks GRAM and converts its commands into a form understood by a variety of
batch systems.

To take advantage of GRAM, a user still needs a system that can remember what jobs
have been submitted, where they are, and what they are doing. If jobs should fail, the
system must analyze the failure and resubmit the job if necessary. To track large numbers
of jobs, users need queueing, prioritization, logging, and accounting. To provide this
service, the Condor project adapted a standard Condor agent to speak GRAM, yielding
a system called Condor-G, shown in Figure 11.8. This required some small changes to
GRAM such as adding durability and two-phase commit to prevent the loss or repetition
of jobs [55].

The power of GRAM is to expand the reach of a user to any sort of batch system,
whether it runs Condor or not. For example, the solution of the NUG30 [56] quadratic
assignment problem relied on the ability of Condor-G to mediate access to over a thousand
hosts spread across tens of batch systems on several continents. We will describe NUG30
in greater detail below.

The are also some disadvantages to GRAM. Primarily, it couples resource allocation
and job execution. Unlike direct flocking in Figure 11.7, the agent must direct a partic-
ular job, with its executable image and all, to a particular queue without knowing the
availability of resources behind that queue. This forces the agent to either oversubscribe
itself by submitting jobs to multiple queues at once or undersubscribe itself by submitting
jobs to potentially long queues. Another disadvantage is that Condor-G does not support
all of the varied features of each batch system underlying GRAM. Of course, this is a
necessity: if GRAM included all the bells and whistles of every underlying system, it

Q Q

R R R R R

A

R

Foreign batch system Foreign batch system

11

2
2

Figure 11.8 Condor-G ca. 2000. An agent (A) is shown executing two jobs through foreign batch
queues (Q). Step 1: The agent transfers jobs directly to remote queues. Step 2: The jobs wait for
idle resources (R), and then execute on them.
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Step one:

User submits Condor daemons
as batch jobs in foreign systems

Step two:

Submitted daemons form an
adhoc personal Condor pool

User runs jobs on
personal Condor pool

Step three:

Q Q
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Figure 11.9 Condor-G and Gliding In ca. 2001. A Condor-G agent (A) executes jobs on resources
(R) by gliding in through remote batch queues (Q). Step 1: A Condor-G agent submits the Condor
daemons to two foreign batch queues via GRAM. Step 2: The daemons form a personal Condor
pool with the user’s personal matchmaker (M). Step 3: The agent executes jobs as in Figure 11.4.

would be so complex as to be unusable. However, a variety of useful features, such as
the ability to checkpoint or extract the job’s exit code are missing.

This problem is solved with a technique called gliding in, shown in Figure 11.9. To
take advantage of both the powerful reach of Condor-G and the full Condor machinery,
a personal Condor pool may be carved out of remote resources. This requires three steps.
In the first step, a Condor-G agent is used to submit the standard Condor daemons as jobs
to remote batch systems. From the remote system’s perspective, the Condor daemons are
ordinary jobs with no special privileges. In the second step, the daemons begin executing
and contact a personal matchmaker started by the user. These remote resources along with
the user’s Condor-G agent and matchmaker form a personal Condor pool. In step three,
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the user may submit normal jobs to the Condor-G agent, which are then matched to and
executed on remote resources with the full capabilities of Condor.

To this point, we have defined communities in terms of such concepts as responsibility,
ownership, and control. However, communities may also be defined as a function of more
tangible properties such as location, accessibility, and performance. Resources may group
themselves together to express that they are ‘nearby’ in measurable properties such as
network latency or system throughput. We call these groupings I/O communities.

I/O communities were expressed in early computational grids such as the Distributed
Batch Controller (DBC) [57]. The DBC was designed in 1996 for processing data from
the NASA Goddard Space Flight Center. Two communities were included in the original
design: one at the University of Wisconsin and the other in the District of Columbia.
A high-level scheduler at Goddard would divide a set of data files among available
communities. Each community was then responsible for transferring the input data, per-
forming computation, and transferring the output back. Although the high-level scheduler
directed the general progress of the computation, each community retained local control
by employing Condor to manage its resources.

Another example of an I/O community is the execution domain. This concept was
developed to improve the efficiency of data transfers across a wide-area network. An
execution domain is a collection of resources that identify themselves with a checkpoint
server that is close enough to provide good I/O performance. An agent may then make
informed placement and migration decisions by taking into account the rough physical
information provided by an execution domain. For example, an agent might strictly require
that a job remain in the execution domain that it was submitted from. Or, it might permit a
job to migrate out of its domain after a suitable waiting period. Examples of such policies
expressed in the ClassAd language may be found in Reference [58].

Figure 11.10 shows a deployed example of execution domains. The Istituto Nazionale
de Fisica Nucleare (INFN) Condor pool consists of a large set of workstations spread
across Italy. Although these resources are physically distributed, they are all part of a
national organization, and thus share a common matchmaker in Bologna, which enforces
institutional policies. To encourage local access to data, six execution domains are defined
within the pool, indicated by dotted lines. Each domain is internally connected by a fast
network and shares a checkpoint server. Machines not specifically assigned to an execution
domain default to the checkpoint server in Bologna.

Recently, the Condor project developed a complete framework for building general-
purpose I/O communities. This framework permits access not only to checkpoint images
but also to executables and run-time data. This requires some additional machinery for all
parties. The storage device must be an appliance with sophisticated naming and resource
management [59]. The application must be outfitted with an interposition agent that can
translate application I/O requests into the necessary remote operations [60]. Finally, an
extension to the ClassAd language is necessary for expressing community relationships.
This framework was used to improve the throughput of a high-energy physics simulation
deployed on an international Condor flock [61].
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Figure 11.10 INFN Condor pool ca. 2002. This is a map of a single Condor pool spread across
Italy. All resources (R) across the country share the same matchmaker (M) in Bologna. Dotted lines
indicate execution domains in which resources share a checkpoint server (C). Numbers indicate
resources at each site. Resources not assigned to a domain use the checkpoint server in Bologna.
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11.5 PLANNING AND SCHEDULING

In preparing for battle I have always found that plans are useless, but planning is
indispensable.

– Dwight D. Eisenhower (1890–1969)

The central purpose of distributed computing is to enable a community of users to
perform work on a pool of shared resources. Because the number of jobs to be done
nearly always outnumbers the available resources, somebody must decide how to allocate
resources to jobs. Historically, this has been known as scheduling. A large amount of
research in scheduling was motivated by the proliferation of massively parallel processor
(MPP) machines in the early 1990s and the desire to use these very expensive resources as
efficiently as possible. Many of the RMSs we have mentioned contain powerful scheduling
components in their architecture.

Yet, Grid computing cannot be served by a centralized scheduling algorithm. By defini-
tion, a Grid has multiple owners. Two supercomputers purchased by separate organizations
with distinct funds will never share a single scheduling algorithm. The owners of these
resources will rightfully retain ultimate control over their own machines and may change
scheduling policies according to local decisions. Therefore, we draw a distinction based
on the ownership. Grid computing requires both planning and scheduling.

Planning is the acquisition of resources by users. Users are typically interested in
increasing personal metrics such as response time, turnaround time, and throughput of
their own jobs within reasonable costs. For example, an airline customer performs planning
when she examines all available flights from Madison to Melbourne in an attempt to arrive
before Friday for less than $1500. Planning is usually concerned with the matters of what
and where.

Scheduling is the management of a resource by its owner. Resource owners are typically
interested in increasing system metrics such as efficiency, utilization, and throughput with-
out losing the customers they intend to serve. For example, an airline performs scheduling
when its sets the routes and times that its planes travel. It has an interest in keeping planes
full and prices high without losing customers to its competitors. Scheduling is usually
concerned with the matters of who and when.

Of course, there is feedback between planning and scheduling. Customers change
their plans when they discover a scheduled flight is frequently late. Airlines change their
schedules according to the number of customers that actually purchase tickets and board
the plane. But both parties retain their independence. A customer may purchase more
tickets than she actually uses. An airline may change its schedules knowing full well it
will lose some customers. Each side must weigh the social and financial consequences
against the benefits.

The challenges faced by planning and scheduling in a Grid computing environment
are very similar to the challenges faced by cycle-scavenging from desktop workstations.



316 DOUGLAS THAIN, TODD TANNENBAUM, AND MIRON LIVNY

The insistence that each desktop workstation is the sole property of one individual who
is in complete control, characterized by the success of the personal computer, results
in distributed ownership. Personal preferences and the fact that desktop workstations are
often purchased, upgraded, and configured in a haphazard manner results in heterogeneous
resources. Workstation owners powering their machines on and off whenever they desire
creates a dynamic resource pool, and owners performing interactive work on their own
machines creates external influences.

Condor uses matchmaking to bridge the gap between planning and scheduling. Match-
making creates opportunities for planners and schedulers to work together while still
respecting their essential independence. Although Condor has traditionally focused on
producing robust planners rather than complex schedulers, the matchmaking framework
allows both parties to implement sophisticated algorithms.

Matchmaking requires four steps, shown in Figure 11.11. In the first step, agents
and resources advertise their characteristics and requirements in classified advertisements
(ClassAds), named after brief advertisements for goods and services found in the morn-
ing newspaper. In the second step, a matchmaker scans the known ClassAds and creates
pairs that satisfy each other’s constraints and preferences. In the third step, the match-
maker informs both parties of the match. The responsibility of the matchmaker then
ceases with respect to the match. In the final step, claiming, the matched agent and the
resource establish contact, possibly negotiate further terms, and then cooperate to exe-
cute a job. The clean separation of the claiming step has noteworthy advantages, such as
enabling the resource to independently authenticate and authorize the match and enabling
the resource to verify that match constraints are still satisfied with respect to current
conditions [62].

A ClassAd is a set of uniquely named expressions, using a semistructured data model,
so no specific schema is required by the matchmaker. Each named expression is called
an attribute. Each attribute has an attribute name and an attribute value. In our initial
ClassAd implementation, the attribute value could be a simple integer, string, floating point
value, or expression composed of arithmetic and logical operators. After gaining more
experience, we created a second ClassAd implementation that introduced richer attribute
value types and related operators for records, sets, and tertiary conditional operators
similar to C.
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Figure 11.11 Matchmaking.
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Because ClassAds are schema-free, participants in the system may attempt to refer to
attributes that do not exist. For example, a job may prefer machines with the attribute
(Owner == ‘‘Fred’’), yet some machines may fail to define the attribute Owner.
To solve this, ClassAds use three-valued logic that allows expressions to be evaluated
to either true, false, or undefined. This explicit support for missing information
allows users to build robust requirements even without a fixed schema.

The Condor matchmaker assigns significance to two special attributes: Require-
ments and Rank. Requirements indicates a constraint and Rank measures the desir-
ability of a match. The matchmaking algorithm requires that for two ClassAds to match,
both of their corresponding Requirements must evaluate to true. The Rank attribute
should evaluate to an arbitrary floating point number. Rank is used to choose among
compatible matches: Among provider advertisements matching a given customer adver-
tisement, the matchmaker chooses the one with the highest Rank value (noninteger values
are treated as zero), breaking ties according to the provider’s Rank value.

ClassAds for a job and a machine are shown in Figure 11.12. The Requirements
state that the job must be matched with an Intel Linux machine that has enough free
disk space (more than 6 MB). Out of any machines that meet these requirements, the job
prefers a machine with lots of memory, followed by good floating point performance.
Meanwhile, the machine advertisement Requirements states that this machine is not
willing to match with any job unless its load average is low and the keyboard has been
idle for more than 15 min. In other words, it is only willing to run jobs when it would
otherwise sit idle. When it is willing to run a job, the Rank expression states it prefers
to run jobs submitted by users from its own department.

11.5.1 Combinations of planning and scheduling

As we mentioned above, planning and scheduling are related yet independent. Both plan-
ning and scheduling can be combined within one system.

Condor-G, for instance, can perform planning around a schedule. Remote site sched-
ulers control the resources, and once Condor-G submits a job into a remote queue, when

Job ClassAd

MyType = ‘‘Job’’

Machine ClassAd

[

TargetType = ‘‘Machine’’
Requirements = 
((other.Arch==‘‘INTEL’’&&
other.OpSys==‘‘LINUX’’)
&& other.Disk > my.DiskUsage)
Rank = (Memory ∗ 10000) + KFlops 
Cmd = ‘‘/home/tannenba/bin/sim-exe’’ 
Department = ‘‘CompSci’’
Owner = ‘‘tannenba’’
DiskUsage = 6000
]

[
MyType = ‘‘Machine’’
TargetType = ‘‘Job’’
Machine = ‘‘nostos.cs.wisc.edu’’
Requirements =
(LoadAvg <= 0.300000) &&
(KeyboardIdle > (15 ∗ 60))
Rank = other.Department==self.Department
Arch = ‘‘INTEL’’
OpSys = ‘‘LINUX’’
Disk = 3076076
]

Figure 11.12 Two sample ClassAds from Condor.
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it will actually run is at the mercy of the remote scheduler (see Figure 11.8). But if the
remote scheduler publishes information about its timetable or workload priorities via a
ClassAd to the Condor-G matchmaker, Condor-G could begin making better choices by
planning where it should submit jobs (if authorized at multiple sites), when it should
submit them, and/or what types of jobs to submit. In fact, this approach is currently being
investigated by the PPDG [33]. As more information is published, Condor-G can perform
better planning. But even in a complete absence of information from the remote scheduler,
Condor-G could still perform planning, although the plan may start to resemble ‘shooting
in the dark’. For example, one such plan could be to submit the job once to each site
willing to take it, wait and see where it completes first, and then upon completion, delete
the job from the remaining sites.

Another combination is scheduling within a plan. Consider as an analogy a large
company that purchases, in advance, eight seats on a Greyhound bus each week for
a year. The company does not control the bus schedule, so they must plan how to utilize
the buses. However, after purchasing the tickets, the company is free to decide to send to
the bus terminal whatever employees it wants in whatever order it desires. The Condor
system performs scheduling within a plan in several situations. One such situation is
when Condor schedules parallel jobs on compute clusters [30]. When the matchmaking
framework offers a match to an agent and the subsequent claiming protocol is successful,
the agent considers itself the owner of that resource until told otherwise. The agent
then creates a schedule for running tasks upon the resources that it has claimed via
planning.

11.5.2 Matchmaking in practice

Matchmaking emerged over several versions of the Condor software. The initial system
used a fixed structure for representing both resources and jobs. As the needs of the users
developed, these structures went through three major revisions, each introducing more
complexity in an attempt to retain backwards compatibility with the old. This finally
led to the realization that no fixed schema would serve for all time and resulted in the
development of a C-like language known as control expressions [63] in 1992. By 1995,
the expressions had been generalized into classified advertisements or ClassAds [64]. This
first implementation is still used heavily in Condor at the time of this writing. However, it
is slowly being replaced by a new implementation [16, 17, 18] that incorporated lessons
from language theory and database systems.

A stand-alone open source software package for manipulating ClassAds is available in
both Java and C++ [65]. This package enables the matchmaking framework to be used in
other distributed computing projects [66, 53]. Several research extensions to matchmaking
have been built. Gang matching [17, 18] permits the coallocation of more than once
resource, such as a license and a machine. Collections provide persistent storage for
large numbers of ClassAds with database features such as transactions and indexing. Set
matching [67] permits the selection and claiming of large numbers of resource using
a very compact expression representation. Indirect references [61] permit one ClassAd
to refer to another and facilitate the construction of the I/O communities mentioned
above.
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In practice, we have found matchmaking with ClassAds to be very powerful. Most
RMSs allow customers to set provide requirements and preferences on the resources they
wish. But the matchmaking framework’s ability to allow resources to impose constraints
on the customers they wish to service is unique and necessary for preserving distributed
ownership. The clean separation between matchmaking and claiming allows the match-
maker to be blissfully ignorant about the actual mechanics of allocation, permitting it
to be a general service that does not have to change when new types of resources or
customers are added. Because stale information may lead to a bad match, a resource is
free to refuse a claim even after it has been matched. Matchmaking is capable of repre-
senting wildly divergent resources, ranging from electron microscopes to storage arrays
because resources are free to describe themselves without a schema. Even with similar
resources, organizations track different data, so no schema promulgated by the Condor
software would be sufficient. Finally, the matchmaker is stateless and thus can scale to
very large systems without complex failure recovery.

11.6 PROBLEM SOLVERS

We have delved down into the details of planning and execution that the user relies upon,
but may never see. Let us now move up in the Condor kernel and discuss the environment
in which a user actually works.

A problem solver is a higher-level structure built on top of the Condor agent. Two
problem solvers are provided with Condor: master–worker (MW) and the directed acyclic
graph manager (5). Each provides a unique programming model for managing large
numbers of jobs. Other problem solvers are possible and may be built using the public
interfaces of a Condor agent.

A problem solver relies on a Condor agent in two important ways. A problem solver
uses the agent as a service for reliably executing jobs. It need not worry about the
many ways that a job may fail in a distributed system, because the agent assumes all
responsibility for hiding and retrying such errors. Thus, a problem solver need only
concern itself with the application-specific details of ordering and task selection. The
agent is also responsible for making the problem solver itself reliable. To accomplish
this, the problem solver is presented as a normal Condor job that simply executes at
the submission site. Once started, the problem solver may then turn around and submit
subjobs back to the agent.

From the perspective of a user or a problem solver, a Condor agent is identical to a
Condor-G agent. Thus, any of the structures we describe below may be applied to an
ordinary Condor pool or to a wide-area Grid computing scenario.

11.6.1 Master–Worker

Master–Worker (MW) is a system for solving a problem of indeterminate size on a large
and unreliable workforce. The MW model is well-suited for problems such as parameter
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Figure 11.13 Structure of a Master–Worker program.

searches where large portions of the problem space may be examined independently, yet
the progress of the program is guided by intermediate results.

The MW model is shown in Figure 11.13. One master process directs the computation
with the assistance of as many remote workers as the computing environment can provide.
The master itself contains three components: a work list, a tracking module, and a steering
module. The work list is simply a record of all outstanding work the master wishes to
be done. The tracking module accounts for remote worker processes and assigns them
uncompleted work. The steering module directs the computation by examining results,
modifying the work list, and communicating with Condor to obtain a sufficient number
of worker processes.

Of course, workers are inherently unreliable: they disappear when machines crash and
they reappear as new resources become available. If a worker should disappear while
holding a work unit, the tracking module simply returns it to the work list. The tracking
module may even take additional steps to replicate or reassign work for greater reliability
or simply to speed the completion of the last remaining work units.

MW is packaged as source code for several C++ classes. The user must extend the
classes to perform the necessary application-specific worker processing and master assign-
ment, but all of the necessary communication details are transparent to the user.

MW is the result of several generations of software development. It began with
Pruyne’s doctoral thesis [64], which proposed that applications ought to have an explicit
interface to the system responsible for finding resources and placing jobs. Such changes
were contributed to PVM release 3.3 [68]. The first user of this interface was the Worker
Distributor (WoDi or ‘Woody’), which provided a simple interface to a work list processed
by a large number of workers. The WoDi interface was a very high-level abstraction that
presented no fundamental dependencies on PVM. It was quickly realized that the same
functionality could be built entirely without PVM. Thus, MW was born [56]. MW pro-
vides an interface similar to WoDi, but has several interchangeable implementations.
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Today, MW can operate by communicating through PVM, through a shared file system,
over sockets, or using the standard universe (described below).

11.6.2 Directed Acyclic Graph Manager

The Directed Acyclic Graph Manager (DAGMan) is a service for executing multiple jobs
with dependencies in a declarative form. DAGMan might be thought of as a distributed,
fault-tolerant version of the traditional make. Like its ancestor, it accepts a declaration
that lists the work to be done and the constraints on its order. Unlike make, it does not
depend on the file system to record a DAG’s progress. Indications of completion may
be scattered across a distributed system, so DAGMan keeps private logs, allowing it to
resume a DAG where it left off, even in the face of crashes and other failures.

Figure 11.14 demonstrates the language accepted by DAGMan. A JOB statement asso-
ciates an abstract name (A) with a file (a.condor) that describes a complete Condor
job. A PARENT-CHILD statement describes the relationship between two or more jobs.
In this script, jobs B and C are may not run until A has completed, while jobs D and E
may not run until C has completed. Jobs that are independent of each other may run in
any order and possibly simultaneously.

In this script, job C is associated with a PRE and a POST program. These commands
indicate programs to be run before and after a job executes. PRE and POST programs
are not submitted as Condor jobs but are run by DAGMan on the submitting machine.
PRE programs are generally used to prepare the execution environment by transferring or
uncompressing files, while POST programs are generally used to tear down the environ-
ment or to evaluate the output of the job.

DAGMan presents an excellent opportunity to study the problem of multilevel error
processing. In a complex system that ranges from the high-level view of DAGs all the
way down to the minutiae of remote procedure calls, it is essential to tease out the source
of an error to avoid unnecessarily burdening the user with error messages.

Jobs may fail because of the nature of the distributed system. Network outages and
reclaimed resources may cause Condor to lose contact with a running job. Such failures
are not indications that the job itself has failed, but rather that the system has failed.

A
JOB A a.condor

JOB B b.condor

JOB C c. condor

JOB D d.condor

JOB E e.condor

PARENT A CHILD B C

PARENT C CHILD D E

SCRIPT PRE C in.pl

SCRIPT POST C out.pl

RETRY C 3

B
C

D E

in.pl

out.pl

Figure 11.14 A Directed Acyclic Graph.
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Such situations are detected and retried by the agent in its responsibility to execute jobs
reliably. DAGMan is never aware of such failures.

Jobs may also fail of their own accord. A job may produce an ordinary error result if
the user forgets to provide a necessary argument or input file. In this case, DAGMan is
aware that the job has completed and sees a program result indicating an error. It responds
by writing out a rescue DAG and exiting with an error code. The rescue DAG is a new
DAG listing the elements of the original DAG left unexecuted. To remedy the situation,
the user may examine the rescue DAG, fix any mistakes in submission, and resubmit it
as a normal DAG.

Some environmental errors go undetected by the distributed system. For example, a
corrupted executable or a dismounted file system should be detected by the distributed
system and retried at the level of the agent. However, if the job was executed via Condor-
G through a foreign batch system, such detail beyond ‘job failed’ may not be available,
and the job will appear to have failed of its own accord. For these reasons, DAGMan
allows the user to specify that a failed job be retried, using the RETRY command shown
in Figure 11.14.

Some errors may be reported in unusual ways. Some applications, upon detecting a
corrupt environment, do not set an appropriate exit code, but simply produce a message
on the output stream and exit with an indication of success. To remedy this, the user
may provide a POST script that examines the program’s output for a valid format. If not
found, the POST script may return failure, indicating that the job has failed and triggering
a RETRY or the production of a rescue DAG.

11.7 SPLIT EXECUTION

So far, this chapter has explored many of the techniques of getting a job to an appropriate
execution site. However, that only solves part of the problem. Once placed, a job may
find itself in a hostile environment: it may be without the files it needs, it may be behind
a firewall, or it may not even have the necessary user credentials to access its data. Worse
yet, few resources sites are uniform in their hostility. One site may have a user’s files yet
not recognize the user, while another site may have just the opposite situation.

No single party can solve this problem. No process has all the information and tools
necessary to reproduce the user’s home environment. Only the execution machine knows
what file systems, networks, and databases may be accessed and how they must be reached.
Only the submission machine knows at run time what precise resources the job must
actually be directed to. Nobody knows in advance what names the job may find its
resources under, as this is a function of location, time, and user preference.

Cooperation is needed. We call this cooperation split execution. It is accomplished
by two distinct components: the shadow and the sandbox. These were mentioned in
Figure 11.3. Here we will examine them in detail.

The shadow represents the user to the system. It is responsible for deciding exactly
what the job must do as it runs. The shadow provides absolutely everything needed to
specify the job at run time: the executable, the arguments, the environment, the input
files, and so on. None of this is made known outside of the agent until the actual moment
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of execution. This allows the agent to defer placement decisions until the last possible
moment. If the agent submits requests for resources to several matchmakers, it may award
the highest priority job to the first resource that becomes available without breaking any
previous commitments.

The sandbox is responsible for giving the job a safe place to play. It must ask the
shadow for the job’s details and then create an appropriate environment. The sandbox
really has two distinct components: the sand and the box. The sand must make the job feel
at home by providing everything that it needs to run correctly. The box must protect the
resource from any harm that a malicious job might cause. The box has already received
much attention [69, 70, 71, 72], so we will focus here on describing the sand.1

Condor provides several universes that create a specific job environment. A universe is
defined by a matched sandbox and shadow, so the development of a new universe neces-
sarily requires the deployment of new software modules at both sides. The matchmaking
framework described above can be used to select resources equipped with the appropri-
ate universe. Here, we will describe the oldest and the newest universes in Condor: the
standard universe and the Java universe.

11.7.1 The standard universe

The standard universe was the only universe supplied by the earliest versions of Condor
and is a descendant of the Remote UNIX [14] facility.

The goal of the standard universe is to faithfully reproduce the user’s home POSIX
environment for a single process running at a remote site. The standard universe provides
emulation for the vast majority of standard system calls including file I/O, signal rout-
ing, and resource management. Process creation and interprocess communication are not
supported and users requiring such features are advised to consider the MPI and PVM
universes or the MW problem solver, all described above.

The standard universe also provides checkpointing. This is the ability to take a snapshot
of a running process and place it in stable storage. The snapshot may then be moved to
another site and the entire process reconstructed and then resumed right from where it
left off. This may be done to migrate a process from one machine to another or it may
be used to recover failed processes and improve throughput in the face of failures.

Figure 11.15 shows all of the components necessary to create the standard universe.
At the execution site, the sandbox is responsible for creating a safe and usable execution
environment. It prepares the machine by creating a temporary directory for the job, and
then fetches all of the job’s details – the executable, environment, arguments, and so
on – and places them in the execute directory. It then invokes the job and is responsible
for monitoring its health, protecting it from interference, and destroying it if necessary.

At the submission site, the shadow is responsible for representing the user. It provides
all of the job details for the sandbox and makes all of the necessary policy decisions
about the job as it runs. In addition, it provides an I/O service accessible over a secure
remote procedure call (RPC) channel. This provides remote access to the user’s home
storage device.

1 The Paradyn Project has explored several variations of this problem, such as attacking the sandbox [73], defending the
shadow [74], and hijacking the job [75].
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Figure 11.15 The standard universe.

To communicate with the shadow, the user’s job must be relinked with a special library
provided by Condor. This library has the same interface as the standard C library, so no
changes to the user’s code are necessary. The library converts all of the job’s standard
system calls into secure remote procedure calls back to the shadow. It is also capable
of converting I/O operations into a variety of remote access protocols, including HTTP,
GridFTP [36], NeST [59], and Kangaroo [76]. In addition, it may apply a number of other
transformations, such as buffering, compression, and speculative I/O.

It is vital to note that the shadow remains in control of the entire operation. Although
both the sandbox and the Condor library are equipped with powerful mechanisms, nei-
ther is authorized to make decisions without the shadow’s consent. This maximizes the
flexibility of the user to make run-time decisions about exactly what runs where and
when.

An example of this principle is the two-phase open. Neither the sandbox nor the library
is permitted to simply open a file by name. Instead, they must first issue a request to map
a logical file name (the application’s argument to open) into a physical file name. The
physical file name is similar to a URL and describes the actual file name to be used, the
method by which to access it, and any transformations to be applied.

Figure 11.16 demonstrates two-phase open. Here the application requests a file named
alpha. The library asks the shadow how the file should be accessed. The shadow responds
that the file is available using remote procedure calls, but is compressed and under a
different name. The library then issues an open to access the file.

Another example is given in Figure 11.17. Here the application requests a file named
beta. The library asks the shadow how the file should be accessed. The shadow responds
that the file is available using the NeST protocol on a server named nest.wisc.edu.
The library then contacts that server and indicates success to the user’s job.

The mechanics of checkpointing and remote system calls in Condor are described in
great detail by Litzkow et al. [77, 78]. We have also described Bypass, a stand-alone
system for building similar split execution systems outside of Condor [60].
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Figure 11.16 Two-phase open using the shadow.
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11.7.2 The Java universe

A universe for Java programs was added to Condor in late 2001. This was due to a
growing community of scientific users that wished to perform simulations and other
work in Java. Although such programs might run slower than native code, such losses
were offset by faster development times and access to larger numbers of machines. By
targeting applications to the Java Virtual Machine (JVM), users could avoid dealing with
the time-consuming details of specific computing systems.

Previously, users had run Java programs in Condor by submitting an entire JVM binary
as a standard universe job. Although this worked, it was inefficient in two ways: the JVM
binary could only run on one type of CPU, which defied the whole point of a universal
instruction set, and the repeated transfer of the JVM and the standard libraries was a
waste of resources on static data.

A new Java universe was developed which would raise the level of abstraction to create
a complete Java environment rather than a POSIX environment. The components of the
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Figure 11.18 The Java universe.

new Java universe are shown in Figure 11.18. The responsibilities of each component are
the same as other universes, but the functionality changes to accommodate the unique
features of Java.

The sandbox is responsible for creating a safe and comfortable execution environment.
It must ask the shadow for all of the job’s details, just as in the standard universe.
However, the location of the JVM is provided by the local administrator, as this may
change from machine to machine. In addition, a Java program consists of a variety of run-
time components, including class files, archive files, and standard libraries. The sandbox
must place all of these components in a private execution directory along with the user’s
credentials and start the JVM according to the local details.

The I/O mechanism is somewhat more complicated in the Java universe. The job is
linked against a Java I/O library that presents remote I/O in terms of standard inter-
faces such as InputStream and OutputStream. This library does not communicate
directly with any storage device, but instead calls an I/O proxy managed by the sandbox.
This unencrypted connection is secure by making use of the loopback network interface
and presenting a shared secret. The sandbox then executes the job’s I/O requests along
the secure RPC channel to the shadow, using all of the same security mechanisms and
techniques as in the standard universe.

Initially, we chose this I/O mechanism so as to avoid reimplementing all of the I/O
and security features in Java and suffering the attendant maintenance work. However,
there are several advantages of the I/O proxy over the more direct route used by the
standard universe. The proxy allows the sandbox to pass through obstacles that the job
does not know about. For example, if a firewall lies between the execution site and the
job’s storage, the sandbox may use its knowledge of the firewall to authenticate and pass
through. Likewise, the user may provide credentials for the sandbox to use on behalf of
the job without rewriting the job to make use of them.

The Java universe is sensitive to a wider variety of errors than most distributed com-
puting environments. In addition to all of the usual failures that plague remote execution,
the Java environment is notoriously sensitive to installation problems, and many jobs
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and sites are unable to find run-time components, whether they are shared libraries, Java
classes, or the JVM itself. Unfortunately, many of these environmental errors are pre-
sented to the job itself as ordinary exceptions, rather than expressed to the sandbox
as an environmental failure. To combat this problem, a small Java wrapper program
is used to execute the user’s job indirectly and analyze the meaning of any errors in
the execution. A complete discussion of this problem and its solution may be found in
Reference [31].

11.8 CASE STUDIES

Grid technology, and Condor in particular, is working today on real-world problems. The
three brief case studies presented below provide a glimpse on how Condor and Condor-G
are being used in production not only in academia but also in industry. Two commercial
organizations, with the foresight to embrace the integration of computational Grids into
their operations, are presented.

11.8.1 Micron Technology, Inc.

Micron Technology, Inc., has established itself as one of the leading worldwide providers
of semiconductor solutions. Micron’s quality semiconductor solutions serve customers
in a variety of industries including computer and computer-peripheral manufacturing,
consumer electronics, CAD/CAM, telecommunications, office automation, networking and
data processing, and graphics display.

Micron’s mission is to be the most efficient and innovative global provider of semi-
conductor solutions. This mission is exemplified by short cycle times, high yields, low
production costs, and die sizes that are some of the smallest in the industry. To meet
these goals, manufacturing and engineering processes are tightly controlled at all steps,
requiring significant computational analysis.

Before Condor, Micron had to purchase dedicated compute resources to meet peak
demand for engineering analysis tasks. Condor’s ability to consolidate idle compute
resources across the enterprise offered Micron the opportunity to meet its engineering
needs without incurring the cost associated with traditional, dedicated compute resources.
With over 18 000 employees worldwide, Micron was enticed by the thought of unlocking
the computing potential of its desktop resources.

So far, Micron has set up two primary Condor pools that contain a mixture of desk-
top machines and dedicated compute servers. Condor manages the processing of tens
of thousands of engineering analysis jobs per week. Micron engineers report that the
analysis jobs run faster and require less maintenance. As an added bonus, dedicated
resources that were formerly used for both compute-intensive analysis and less inten-
sive reporting tasks can now be used solely for compute-intensive processes with greater
efficiency.

Advocates of Condor at Micron especially like how easy it has been to deploy Con-
dor across departments, owing to the clear model of resource ownership and sandboxed
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environment. Micron’s software developers, however, would like to see better integration
of Condor with a wider variety of middleware solutions, such as messaging or CORBA.

11.8.2 C.O.R.E. Digital Pictures

C.O.R.E. Digital Pictures is a highly successful Toronto-based computer animation studio,
cofounded in 1994 by William Shatner (of film and television fame) and four talented
animators.

Photo-realistic animation, especially for cutting-edge film special effects, is a compute-
intensive process. Each frame can take up to an hour, and 1 s of animation can require 30
or more frames. When the studio was first starting out and had only a dozen employees,
each animator would handle their own render jobs and resources by hand. But with lots of
rapid growth and the arrival of multiple major motion picture contracts, it became evident
that this approach would no longer be sufficient. In 1998, C.O.R.E. looked into several
RMS packages and settled upon Condor.

Today, Condor manages a pool consisting of 70 Linux machines and 21 Silicon Graph-
ics machines. The 70 Linux machines are all dual-CPU and mostly reside on the desktops
of the animators. By taking advantage of Condor ClassAds and native support for mul-
tiprocessor machines, one CPU is dedicated to running Condor jobs, while the second
CPU only runs jobs when the machine is not being used interactively by its owner.

Each animator has his own Condor queuing agent on his own desktop. On a busy day,
C.O.R.E. animators submit over 15 000 jobs to Condor. C.O.R.E. has done a significant
amount of vertical integration to fit Condor transparently into their daily operations. Each
animator interfaces with Condor via a set of custom tools tailored to present Condor’s
operations in terms of a more familiar animation environment (see Figure 11.19). C.O.R.E.
developers created a session metascheduler that interfaces with Condor in a manner similar
to the DAGMan service previously described. When an animator hits the ‘render’ button,
a new session is created and the custom metascheduler is submitted as a job into Condor.
The metascheduler translates this session into a series of rendering jobs that it subsequently
submits to Condor, asking Condor for notification on their progress. As Condor notification
events arrive, this triggers the metascheduler to update a database and perhaps submit
follow-up jobs following a DAG.

C.O.R.E. makes considerable use of the schema-free properties of ClassAds by inserting
custom attributes into the job ClassAd. These attributes allow Condor to make planning
decisions based upon real-time input from production managers, who can tag a project,
or a shot, or an individual animator with a priority. When jobs are preempted because of
changing priorities, Condor will preempt jobs in such a way that minimizes the loss of
forward progress as defined by C.O.R.E.’s policy expressions.

To date, Condor has been used by C.O.R.E. for many major productions such as X-Men,
Blade II, Nutty Professor II, and The Time Machine.

11.8.3 NUG30 Optimization Problem

In the summer of year 2000, four mathematicians from Argonne National Laboratory, Uni-
versity of Iowa, and Northwestern University used Condor-G and several other technolo-
gies discussed in this document to be the first to solve a problem known as NUG30 [79].
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Figure 11.19 Vertical integration of Condor for computer animation. Custom GUI and database
integration tools sitting on top of Condor help computer animators at C.O.R.E. Digital Pictures.

NUG30 is a quadratic assignment problem that was first proposed in 1968 as one of the
most difficult combinatorial optimization challenges, but remained unsolved for 32 years
because of its complexity.

In order to solve NUG30, the mathematicians started with a sequential solver based
upon a branch-and-bound tree search technique. This technique divides the initial search
space into smaller pieces and bounds what could be the best possible solution in each
of these smaller regions. Although the sophistication level of the solver was enough to
drastically reduce the amount of compute time it would take to determine a solution, the
amount of time was still considerable: over seven years with the best desktop workstation
available to the researchers at that time (a Hewlett Packard C3000).

To combat this computation hurdle, a parallel implementation of the solver was devel-
oped which fit the master–worker model. The actual computation itself was managed
by Condor’s Master–Worker (MW) problem-solving environment. MW submitted work
to Condor-G, which provided compute resources from around the world by both direct
flocking to other Condor pools and by gliding in to other compute resources accessible
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via the Globus GRAM protocol. Remote System Calls, part of Condor’s standard uni-
verse, was used as the I/O service between the master and the workers. Checkpointing
was performed every fifteen minutes for fault tolerance. All of these technologies were
introduced earlier in this chapter.

The end result: a solution to NUG30 was discovered utilizing Condor-G in a com-
putational run of less than one week. During this week, over 95 000 CPU hours were
used to solve the over 540 billion linear assignment problems necessary to crack NUG30.
Condor-G allowed the mathematicians to harness over 2500 CPUs at 10 different sites
(8 Condor pools, 1 compute cluster managed by PBS, and 1 supercomputer managed
by LSF) spanning 8 different institutions. Additional statistics about the NUG30 run are
presented in Table 11.1.

Table 11.1 NUG30 computation statistics. Part A lists how
many CPUs were utilized at different locations on the grid
during the seven day NUG30 run. Part B lists other interesting

statistics about the run

Part A
Number Architecture Location

1024 SGI/Irix NCSA
414 Intel/Linux Argonne
246 Intel/Linux U. of Wisconsin
190 Intel/Linux Georgia Tech
146 Intel/Solaris U. of Wisconsin
133 Sun/Solaris U. of Wisconsin
96 SGI/Irix Argonne
94 Intel/Solaris Georgia Tech
54 Intel/Linux Italy (INFN)
45 SGI/Irix NCSA
25 Intel/Linux U. of New Mexico
16 Intel/Linux NCSA
12 Sun/Solaris Northwestern U.
10 Sun/Solaris Columbia U.
5 Intel/Linux Columbia U.

Part B

Total number of CPUs utilized 2510
Average number of simultaneous CPUs 652.7
Maximum number of simultaneous CPUs 1009
Running wall clock time (sec) 597 872
Total CPU time consumed (sec) 346 640 860
Number of times a machine joined the

computation
19 063

Equivalent CPU time (sec) on an
HP C3000 workstation

218 823 577
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11.9 CONCLUSION

Through its lifetime, the Condor software has grown in power and flexibility. As other
systems such as Kerberos, PVM, and Java have reached maturity and widespread deploy-
ment, Condor has adjusted to accommodate the needs of users and administrators without
sacrificing its essential design. In fact, the Condor kernel shown in Figure 11.3 has not
changed at all since 1988. Why is this?

We believe the key to lasting system design is to outline structures first in terms of
responsibility rather than expected functionality. This may lead to interactions that, at first
blush, seem complex. Consider, for example, the four steps to matchmaking shown in
Figure 11.11 or the six steps to accessing a file shown in Figures 11.16 and 11.17. Yet,
every step is necessary for discharging a component’s responsibility. The matchmaker is
responsible for enforcing community policies, so the agent cannot claim a resource without
its blessing. The shadow is responsible for enforcing the user’s policies, so the sandbox
cannot open a file without its help. The apparent complexity preserves the independence
of each component. We may update one with more complex policies and mechanisms
without harming another.

The Condor project will also continue to grow. The project is home to a variety of
systems research ventures in addition to the flagship Condor software. These include the
Bypass [60] toolkit, the ClassAd [18] resource management language, the Hawkeye [80]
cluster management system, the NeST storage appliance [59], and the Public Key Infras-
tructure Lab [81]. In these and other ventures, the project seeks to gain the hard but
valuable experience of nurturing research concepts into production software. To this end,
the project is a key player in collaborations such as the National Middleware Initiative
(NMI) [38] that aim to harden and disseminate research systems as stable tools for end
users. The project will continue to train students, solve hard problems, and accept and
integrate good solutions from others. We look forward to the challenges ahead!
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