
The Hadoop Stack, Part 1
Introduction to Pig Latin

CSE	40822	–	Cloud	Computing	–	Fall	2018	
Prof.	Douglas	Thain	

University	of	Notre	Dame	
	

Three Case Studies

• Workflow:	Pig	Latin	
• A	dataflow	language	and	execution	system	that	provides	an	SQL-
like	way	of	composing	workflows	of	multiple	Map-Reduce	jobs.	

• Storage:	HBase	
• A	NoSQl	storage	system	that	brings	a	higher	degree	of	structure	to	
the	flat-file	nature	of	HDFS.	

• Execution:	Spark	
• An	in-memory	data	analysis	system	that	can	use	Hadoop	as	a	
persistence	layer,	enabling	algorithms	that	are	not	easily	
expressed	in	Map-Reduce.	

References
	
	
	
	

• Christopher	Olston,	et	al,	Pig	Latin:	A	Not-so-Foreign	
Language	for	Data	Processing,	SIGMOD	2008.	
•  http://dl.acm.org/citation.cfm?id=1376726	

• Alan	Gates	et	al.	Building	a	high-level	dataflow	system	on	top	of	Map-
Reduce:	the	Pig	experience,	VLDB	2009.	
•  http://dl.acm.org/citation.cfm?id=1687568	

• Apache	Pig	Documentation	
•  http://pig.apache.org	

Pig Latin Overview

• Map-Reduce	programs	can	be	challenging	to	write,	and	are	
limited	to	performing	only	one	analysis	step	at	a	time.	
• Pig	Latin:	Chain	together	multiple	Map-Reduce	runs,	each	
one	expressed	by	a	compact	statement	similar	to	SQL.	
• By	using	a	high	level	query	language,	the	system	can	
optimize	the	order	of	operations	in	order	to	produce	a	
better	plan.	
• Pig	Pen:	Test	out	queries	on	sampled	data.	

Dataflow Programming

•  In	a	dataflow	programming	system	(an	old	idea),	a	program	is	a	
directed	graph	of	the	steps	by	which	multiple	data	items	are	
transformed	from	input	to	output.		The	programmer	is	not	
responsible	for	choosing	the	order	in	which	items	are	processed.	

Procedural	Programming	
int	A[]	=	{	10,	20,	30,	…	};	
for(i=0;	i<1000;	i++)	
						B[i]	=	F(A[i]);	
for(i=0;	i<1000;	i++)	
						C[i]	=	G(A[i]);	
	

Dataflow	Programming	
set	A	=	{	10,	20,	30,	…	}	
set	B	=	apply	F(x)	to	A	
set	C	=	apply	G(x)	to	A	
	

Sample Objective

•  Find	each	category	that	contains	more	than	10^6	entries	with	a	
pagerank	of	0.2	or	higher.	

category	 url	 pagerank	
Academic	 www.nd.edu	 3.0	

Commercial	 www.Studebaker.com	 1.5	

Non-Profit	 www.redcross.org	 5.3	

.	.	.	 (billions	of	rows)	 .	.	.	

If we did it in Map-Reduce:
Round	One	–	Compute	Averages	by	Category	
	
map(data)	{	
					split	line	into	category,	url,	pagerank	
					if(pagerank>0.2)	emit(category,pagerank)	
}	
	
reduce(key,	list(values))	{	
							for	each	item	in	list	{	

	count++;	
	total+=value;	

							}	
							emit(count,	category,	total/count);	
}	
	

Round	Two	–	Collect	Results	into	One	File	
	
map(data)	{	
						split	line	into	count,	category,	average	
						if(count>10^6)	emit(1,(category));	
}	
	
reduce(key,	list(values))	{	
							for	each	value	in	list	{	

	emit(value);	
							}	
}	
	

If we did it in SQL…

SELECT	category,	AVG(pagerank)	
FROM	urls	
WHERE	pagerank	>	0.2	
GROUP	BY	category	
HAVING	COUNT(*)	>	10^6	

category	 AVG(pagerank)	
Academic	 1.75	
Commercial	 0.56	
Non-Profit	 3.23	

.		

Same thing in Pig Latin…

urls	=	LOAD	“urls.txt”	AS	(url,	category,	pagerank)	
good_urls	=	FILTER	urls	BY	pagerank	>	0.2;	
groups	=	GROUP	good_urls	BY	category;	
big_groups	=	FILTER	groups	BY	COUNT(good_urls)>	10^6;	
output	=	FOREACH	big_group	GENERATE	category,	
																																																													AVG(good_urls.pagerank);	

Basic Idea

•  Express	queries	in	Pig	Latin.	
• Pig	translates	statements	into	DAG.	
• DAG	is	translated	into	Map-Reduce	Jobs.	
• Map-Reduce	jobs	run	in	Hadoop.	

•  Encourage	Unstructured,	Nested	Data	
• User	Defined	Functions:	

•  A	small	bit	of	Java	that	can	be	imported	into	the	query	language.	
•  Could	potentially	be	a	large/expensive	piece	of	code.	

Normalized Database (SQL)
ProductID	 Name	

1	 Bicycle	

2	 Tricycle	

3	 Unicycle	

PartID	 Name	 Price	

1	 Wheel	 10	

2	 Chain	 15	

3	 Handlebars	 3	

4	 Seat	 12	

ProductID	 PartID	 Quantity	

1	 1	 2	

1	 3	 1	

1	 2	 1	

2	 1	 3	

2	 3	 1	

2	 4	 1	

Codd’s	definitions	of	normal	forms:	
1NF	-	The	domain	of	each	attribute	contains	only	atomic	values,	and	the	value	of	each	attribute	contains	only	a	single	
value	from	that	domain.	
2NF	-	No	non-prime	attribute	in	the	table	is	functionally	dependent	on	a	proper	subset	of	any	candidate	key.	
3NF	-	Every	non-prime	attribute	is	non-transitively	dependent	on	every	candidate	key	in	the	table.	The	attributes	that	
do	not	contribute	to	the	description	of	the	primary	key	are	removed	from	the	table.	In	other	words,	no	transitive	
dependency	is	allowed.	

Nested Data (Pig)

{	
	Name->	‘Bicycle’,	
	Price	->	105,	
	Parts	->	{	
	 	(1,	‘Wheel’,	2,	10.00),	
	 	(2,	‘Chain’,	1,	15.00),	
	 	(3,	‘Handlebars’,	1,	3.00),	
	 	… 	 		
	};	
	Name	->	‘Tricycle’,	
	Price	->	$55,	
	Parts	->	{	
	 	(1,	‘Wheel’,	3),	
	 	(3,	‘Handlebars’,1),	
	 	…	
	}	

}	

JSON-Like	Syntax:	
	
Atom:	‘hello’	or	25	
Ordered	Tuple:	(a,b,c)		
Unordered	Bag:	{a,b,c}	
Map:	{a->x,	b->y,	c->z}	

Operations

• bag	=	LOAD	“file”	USING	format	AS	(field-list)	
• bag	=	FILTER	bag	BY	function	
• bag	=	FOREACH	bag	GENERATE	expression-list	
• bag	=	DISTINCT	bag	
• bag	=	ORDER	bag	BY	expression-list	
• bag	=	GROUP	bag	BY	(field-list)	
• bag	=	COGROUP	bag-list	BY	(field-list)	
•  STORE	bag	INTO	file	USING	format	
	

From Pig to Map-Reduce

urls	=	LOAD	“urls.txt”	AS	(url,	category,	pagerank)	
good_urls	=	FILTER	urls	BY	pagerank	>	0.2;	
groups	=	GROUP	good_urls	BY	category;	
big_groups	=	FILTER	groups	BY	COUNT(good_urls)>	10^6;	
output	=	FOREACH	big_group	GENERATE	category,	
																																																													AVG(good_urls.pagerank);	
	

Example	on	Board:	
Code	->	DAG	->	Map-Reduce	Jobs	

Exercise

• Given	a	whole	lot	of	email	stored	in	Hadoop,	write	a	Pig	
program	will	yield	the	list	of	spammers	who	have	sent	1000	
or	more	pieces	of	spam	email	in	the	last	year,	and	also	
generate	the	list	of	victims	who	have	received	more	than	
1000	items	in	the	last	year.		Mail	from	*@nd.edu	should	
never	be	considered	spam.	
• The	mail	is	stored	in	this	form:	
•  (sender,	receiver,	contents,	date)	

• You	have	a	function	called	IsSpam(contents)	which	returns	
true	if	the	contents	contain	spam.		(Expensive	function.)	

Points for Discussion

• Which	operations	may	be	rearranged	in	the	DAG?	
• Is	Pig	Latin	different	from	SQL	in	a	fundamental	way?		
Or	could	this	have	simply	been	done	with	slight	
changes	to	SQL?	
• Big	data	systems	often	recommend	data	management	
practices	that	are	completely	opposite	of	those	
developed	by	relational	database	systems.		Why?	

