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Section 1: Materials and Methods  
 

Gene Prediction: A comparative gene prediction pipeline (Zdobnov, unpublished) was 

applied to the selected insect genomes of Aedes aegypti, Anopheles gambiae, Apis mellifera, 

Tribolium castaneum, Bombyx mori, Drosophila ananassae, Drosophila erecta, Drosophila 

grimshawi, Drosophila mojavensis, Drosophila pseudoobscura, and Drosophila virilis. This 

approach relied on similarity to known Human and D. melanogaster proteins to identify 

genomic regions with protein-coding potential using tBLASTN (S1), followed by the 

homology-assisted gene prediction using Fgenesh+ (S2). The Ensembl Anopheles PEST3 

annotation and the official Aedes Release1.0 gene build were also subsequently integrated 

into the analysis.  

 

The gene prediction pipeline was applied to the following genome assemblies:  

A. aegypti Aedes Genome Consortium aedes_aegyti_1  

A. gambiae Anopheles Genome Consortium AgamP3  

A. mellifera Baylor Amel_2.0  

B. mori BGI 2003-10-01  

D. ananassae ARACHNE assembly from Agencourt 20050801  

D. erecta ARACHNE assembly from Agencourt 20050801  

D. grimshawi ARACHNE assembly from Agencourt 20050801  

D. mojavensis ARACHNE assembly from Agencourt 20050801  

D. pseudoobscura Flybase release 1.04  

D. virilis ARACHNE assembly from Agencourt 20050801  

T. castaneum Baylor Tcas_1.0  

 

 

 

1
Waterhouse et al



Immunity Gene Families: We grouped genes into homologous clusters using several 

methods and at varying levels of stringency. Orthologous groups were identified using a 

COG-like strategy to cluster reciprocally best matching triangles from all-against-all Smith-

Waterman (S3) comparisons and Inparanoid-like identification of co-orthologs (S4). 

Homologous groups at different similarity levels were identified using Blastclust (S5) on the 

basis of single-linkage (nearest neighbour) clustering of all-against-all BLAST (S6) sequence 

comparisons. Protein domain families were identified using InterProScan (S7) analysis on the 

basis of SMART (S8), Pfam (S9), and PROSITE-profiles (S10) signatures. Data on known 

immune-related genes and gene families were integrated with the data from the gene 

clustering methods to automatically define gene families across all species. For each known 

D. melanogaster ‘seed’ gene from a given immunity family, all members from the seed’s 

orthologous group and blastclusters, as well as all genes having the same InterPro domain(s) 

as the seed protein, were putatively assigned to the family. Using these initial gene family 

results, sets of related genes were manually selected and ClustalW (S11) multiple sequence 

alignments were generated and refined where necessary. These were used to build and 

calibrate Hidden Markov Model (HMM) profiles with the HMMER package (S12) which 

were scanned against the gene sets again to identify additional gene family members. The 

results of the bioinformatics analysis are organized into a web-accessible resource 

(http://cegg.unige.ch/Insecta/immunodb/), which lists putative gene family members along 

with supporting evidence from orthologous groups, blastclusters, InterPro domains, and 

additional HMM profiles, as well as providing sequence and gene model data. Expert 

reviewing of these data for D. melanogaster and the two mosquitoes resulted in confirmation, 

refinement of gene models or rejection of putative gene family members based on knowledge 

of defining characteristics of a given immune-related gene family. The curated data for these 

three species, along with the results from phylogenetic analyses, are also available through the 

web-accessible resource; Immunodb.  

 

Phylogenetics: The manually curated sets of genes were subjected to a phylogenetic analysis 

which aimed to reconstruct evolutionary relationships within each family as well as to 

identify genes or protein domains which are under similar evolutionary pressures and thereby 

likely to preserve functions. Multiple sequence alignments were computed using Muscle 

(S13), or HMM profiles (S12) where only particular domains were required to be aligned. 

These alignments were used to compute phylogenetic trees employing the Neighbour-Joining 

(NJ) algorithm implemented by ClustalW (S11), excluding all gap positions, correcting for 
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multiple substitutions, and assigning confidence with 1000 bootstrap samples. Confident 

orthologous relationships were assigned where the relevant bootstrap support was greater then 

70%. To investigate functional relationships within clades shown in Fig. 2 and Fig. 3, and to 

compute Dm-Ag and Dm-Aa orthologous trio distances shown in Fig. 1B, confidently aligned 

conserved regions were extracted using Gblocks (S14), excluding all gap positions. The 

sequence relationships among these conserved protein cores were estimated in terms of amino 

acid substitutions using the Maximum Likelihood (ML) algorithm implemented by PhyML 

(S15) which allows for differential substitution rates between lineages and at different sites.  

 

Orthologous Trios (Fig. 1A): Immunity single-copy orthologs were identified through our 

phylogenetic analyses, while all single-copy orthologs were identified automatically as 

outlined above using the Smith-Waterman algorithm. The gapless conserved core of the 

alignment of each trio was extracted and used to estimate amino acid substitution rates 

employing the ML algorithm. These are plotted as Dm-Ag distances versus Dm-Aa distances 

for all 1:1:1 orthologous trios. An increased level of sequence divergence is observed among 

the immunity (Im) 1:1:1 orthologs (red) compared to all 1:1:1 orthologs (blue): AgIm mean 

=1.0120 and AgNon-Im mean=0.8074, Wilcoxon rank sum test of AgIm versus AgNon-Im 

p=1.275e-04, AaIm mean=0.9844 and AaNon-Im mean=0.7812, Wilcoxon rank sum test of 

AaIm versus AaNon-Im p=8.298e-05. A greater accumulation of amino acid substitutions is 

observed in conserved protein cores of Ag compared to Aa: AgAll mean=0.8099, AaAll mean 

=0.7835, paired Wilcoxon rank sum test of AgAll versus AaAll p<2.2e-16. In order to 

examine different sets of functionally-related genes, we performed an analysis of genes 

grouped by Gene Ontology (GO, www.geneontology.org) classifications. GO annotations 

were retrieved for the Dm member (best annotated species) of each trio of the set of all 1:1:1 

orthologs. Using the GO parent-child relationships, all terms with 10 or less associated 

proteins were successively merged with their parent terms until the set contained more than 

10 members. Due to the nature of GO, any given protein may be associated with more than 

one term and thus overlap between the sets of proteins is expected. To reduce this 

redundancy, we then excluded all parent terms which had one or more child terms of more 

than 10 members, leaving 471 terms, with a mean of 21.7 members. Wilcoxon rank sum tests 

were performed as above for significance testing for each group and these data are presented 

in Fig. S1A and Table S2. The differences between our immune repertoire and all trios are 

also clearly shown through cumulative frequencies plots (Fig. S1B) of the Dm-Ag/Aa 

distances for the four datasets: AgAll, AaAll, AgIm, and AaIm. 
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Section 2: Text 
 

Anti-Microbial Peptides: AMPs (Fig S2)  

AMPs fall into three major classes which can be described as peptides containing cysteine 

disulfide bonds, linear peptides which form α-helices, or proline- and/or glycine-rich peptides 

(S16). Dm possesses a wide range of AMPs including metchnikowin, drosocin, defensin, 

diptericins, attacins, cecropins, and drosomycins (S17). Four attacins have been identified in 

Dm, however only one of these glycine-rich AMPs has been found in each of the mosquitoes. 

An orthologous group of cysteine-rich defensins, with three peptides in Aa, is formed with 

DmDef and AgDEF1. Gambicins, which have so far only been identified in the two 

mosquitoes, are cysteine-rich peptides which form four disulfide bridges. Cecropins are much 

more widespread among insects; however these α-helical peptides are relatively divergent 

between the mosquitoes and Dm. Ag gambicin has been shown to be induced in the mosquito 

after challenge with E. coli but not Plasmodium, contrasting AgCEC1 which shows the 

opposite effect (S18). In addition to the AMPs presented in Fig. S2 and the gambicin 

discussed above, a putative diptericin and a putative holotricin (Glycine-Rich Repeat Protein: 

GRRP) were identified in the Aa genome.  

 

Caspases: CASPs (Fig S3)  

Caspases are proteolytic enzymes which employ a cysteine protease mechanism to cleave 

aspartic acid of target proteins. CASPs and IAPs (inhibitors of apoptosis) are essential for 

regulating cell death during development. In a nonapoptotic context, a Dm caspase 

(DmDredd) and an IAP (DmIAP2) are required for Imd signaling (S19-21). DmDredd encodes 

an initiator caspase and is an effector of the apoptosis activators reaper, grim and hid (S22). 

The overexpression of DmDredd induces apoptosis in SL2 cells (S22, S23), and interacts via 

its death effector domain with the apoptotic adaptor DmFADD (S24). Six additional CASPs 

have been identified in Dm, and the mosquitoes exhibit expansions leading to 14 in Ag and 10 

in Aa. Single-copy orthologs of the long-form CASPs DmDredd and DmDronc are found in 

both mosquitoes. Independent expansions in Ag and Aa have given rise to three 

DmDamm/DmDream-related CASPs in each mosquito. Mosquito CASPS7 and CASPS8 form 

orthologous pairs, with CASPS7 being most closely related to DmIce and DmDcp1. 

Expansions in the mosquitoes, particularly in Ag, have resulted in two Aa and seven Ag 

CASPs related to DmDecay.  
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Catalases: CATs (Fig S4) 

Catalase is a tetrameric enzyme which efficiently converts H2O2 to water and oxygen. 

Catalase is a single copy gene in Ag (AgCAT1), but a second gene is present in Dm 

(CG9314). CG9314 mRNAs are present in EST databases, but the predicted enzyme lacks 

three of the seven heme-binding residues and is probably not active. This is in agreement with 

the observation that flies in which DmCat is disrupted are extremely weak, lack catalase 

activity and die soon after enclosion (S25). In contrast, both catalase genes in Aa appear to 

code for active enzymes.  

 

CLIP-domain Serine Proteases: CLIP-A,-B,-C,-D,-Es (Fig S5) 

Serine proteases containing one or more clip domains (S26) function in extracellular pathways 

that regulate some immune responses of insects. The CLIP proteases represent a protein 

architecture apparently unique to arthropods, and they form large gene families in the insect 

species studies so far (S27, S28). Infections can stimulate activation of CLIP protease 

zymogens present in hemolymph, resulting in proteolytic activation of prophenoloxidases 

(PPOs) (S29, S30) or activation of the Toll-ligand spätzle (S31, S32). The latter also occurs to 

regulate development of dorsal/ventral pattern in Dm embryos. Some members of the CLIP 

family contain a protease domain in which one or more of the catalytic triad residues has 

mutated such that they are no longer possess proteolytic activity. Such serine protease 

homologs (SPH) can function as cofactors required for PPO activation by an active CLIP 

protease (S33), and they can also negatively regulate the melanization response (S34). The 

CLIP family in Aa is quite large, with 68 genes (compared with 45 in Dm and 54 in Ag), 

including at least 12 SPHs and 5 genes predicted to encode dual protease and SPH domains. 

Phylogenetic analysis of the sequences reveals five main subfamilies, including previously 

described groups A-D (S27) and a new subfamily E containing previously unannotated 

AgCLIPs. Nearly all of the CLIPA and CLIPE genes encode SPHs, whereas the CLIPB, 

CLIPC, and CLIPD groups are predominantly proteases with intact catalytic triads. Subfamily 

B is the largest, and its sequences are most similar to the clip proteases that can activate 

spätzle (Easter and SPE) and those known from studies in lepidopteran and coleopteran 

species to directly activate PPO. Members of subfamily C with known functions include 

DmSnake (embryonic dorsal/ventral pattern) and DmPersephone (involvement in innate 

immune Toll pathway). Functions of CLIP proteases in subfamily D have not yet been 

identified. Although CLIP-domain sequences are poorly conserved, the CLIP-domain 

sequences from active CLIP-proteases in Dm fall into three groups based on distance between 
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conserved Cys residues and on a few other conserved residues (S28). There is a very good 

correlation between branches of the CLIP tree based on alignment of only the protease 

domain and the type of associated clip domain. Subfamily C is associated with clip domain 

type 1a, subfamily D with clip domain type 1b, and subfamily B with clip domain type 2. 

Considering that a function is known for only a few CLIP proteases in any insect species, the 

complexity of this gene family in Aa presents a challenging and exciting prospect for future 

experimental studies of their roles in immune responses.  

 

C-Type Lectins: CTLs (Fig S6) 

Glycans, complex polymers of sugar units that decorate proteins and lipids, have various 

biological roles in the development, growth, function or survival. Many of the roles ascribed 

to glycans involve specific recognition by lectins, carbohydrate-binding proteins of ubiquitous 

nature. Perhaps the largest and most diverse family of animal lectins is the C-type lectins 

(CTLs) which are Ca+-dependent proteins that function largely outside the cells and are either 

secreted or membrane-bound (S35). Sugar-binding activity of CTLs is usually ascribed to a 

single module designated a CRD (carbohydrate-recognition domain), which forms a subset of 

a large family of protein modules that are denoted C-type lectin-like domains (CTLDs) many 

of which are Ca+-independent and bind to non-sugar ligands (S36). Invertebrate CTLs mediate 

several immune responses including opsonisation and microbial clearance (S37, S38), 

hemocyte nodule formation (S39) and activation of prophenoloxidase leading to melanization 

(S40-42). Two CTLs from Ag were shown to be negative regulators of ookinete melanization, 

while they lacked regulatory impact on Sepadex bead melanization, indicating a potential 

specialized immune evasive function for Plasmodium (S43, S44). Phylogenetic analysis of Ag, 

Aa and Dm immunity-realated genes identified 25, 39 and 34 CTLs, respectively. 

Interestingly 9 clear 1:1:1 orthologues exist between the three species. The Aa orthologue of 

AgCTL7 and CG1576 was partially identified; Blasting the Aa contigs with AgCTL7 

identified exons 3 and 4 of AaCTL7 however exons 1 and 2 of the gene could not be found 

possibly due to an error in gene assembly in that region. As a result AaCTL7 was not included 

in the phylogenetic analysis. Those genes conserved in all three species may be implicated in 

conserved developmental processes. Only one of these genes, furrowed,(CG1500) has been 

functionally studied in Dm and showed indeed to be required for the proper development of 

the Dm eye and mechanosensory bristles (S45). There was only 1 orthologous pair (AgCTL8 

and AaCTL8) for which no Dm orthologue could be identified. Several species-specific 

family expansions exist. The largest one is in Aa and includes 20 genes. A Dm expansion 
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includes 14 genes all of which, except one (CG7763), are clustered on chromosome 2L. The 

Ag expansion includes 5 potential mannose binding CTLs, all of which are clustered within 

12 kb at 2L/25D. Interestingly, an Aa CTL (AaCTLMA14) showed strong sequence 

homology to AgCTL4, which was shown to inhibit P. berghei ookinete melanization in Ag. 

While these genes could not be considered 1:1 orthologues as the relevant bootstrap support 

was not strong enough, their striking sequence homology within and outside the CRD 

domains suggests that they might have similar functions. Interestingly, AgCTL4 clusters also 

with AgCTLMA2 both in the tree as well as on chromosome 2L/21F suggesting that these 

parasite agonists originated by gene duplication followed by diversification.  

  

Fibrinogen-Related proteins: FREPs (Fig S7) 

Members of the fibrinogen-related proteins (FREPs) or fibrinogen-domain immuno-lectin 

(FBN) family contain the evolutionary conserved fibrinogen domain that is also found in the 

mammalian ficolins (S46-52). The ficolins are implicated in phagocytosis and complement 

activation, while the horseshoe crab and snail FBN genes have been implicated in bacteria 

binding, enhancement of antimicrobial activity and interactions with parasite (Schistosoma) 

components, respectively. The FREPs contain a pathogen-binding fibrinogen-like domain at 

their C-terminus and the N-terminal sequence is implicated in interactions with the N-

terminus of other FBN proteins resulting in the formation of multimeric protein bundles with 

potentially increased affinity and specificity to the pathogens. FREPs exhibit species-specific 

expansions with only two identifiable orthologous trios and three mosquito orthologous pairs. 

The most notable expansion is found in Ag, which harbors as many as 61 members, compared 

to Aa with 37 and Dm with only 14. However, due to the lack of confidence in the quality of 

certain Aa FREP pseudogene sequences, the gene family in this species might turn out to be 

somewhat larger that currently predicted. The reason for this expansion in the mosquitoes 

remains unknown, but it has been speculated to be partly linked to hematophagy. Several Ag 

FREPs have been shown to be up-regulated by bacterial challenge and malarial infection 

(S27, S48, S53) (Dimopoulos, unpublished). The ability to form multimers (dimers in Ag cell 

line supernatant) may enable an increase of the mosquito’s pattern recognition receptor 

repertoire since different combinations are likely to possess different binding specificities 

(Dong & Dimopoulos, unpublished). The phylogenetic tree was built from the alignment of 

FREP sequences to the Pfam HMM profile of the Fibrinogen domain (PF00147). Several 

proteins were removed (3 from Aa, 9 from Ag) as they were lacking sequences mostly at the 

N or C-terminal which may be a result of gene predictions missing the first and/or last exons.  
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Galectins GALEs (Fig S8) 

Galectins are thiol-dependent, ß-galactoside-binding lectins. Evidence has shown that GALEs 

are implicated in innate immunity in both Dm and Ag. DmGALEs composed of 2 

carbohydrate recognition domains (CRDs) connected by a peptide link (tandem repeat type) 

(S54). The absence of putative transmembrane domain and a classical secretion signal peptide 

implies DmGALEs are secreted by a non-classical secretion pathway (S54). In vitro 

experiments had demonstrated the ability of DmGALEs to bind β-galactoside sugars (S55). 

It is possible that DmGALEs participate in the innate immune system of the fly by facilitating 

microbial recognition and/or phagocytosis. AgGALEs contained only one CRD (prototype), 

and was found to be up-regulated in the salivary glands and gut of Anopheles mosquitoes that 

were infected with malaria or bacteria (S56-58). It was proposed that AgGALEs might 

function as PRRs by binding saccharide ligands on the microbial surface to trigger a host 

immune response, or agglutinate and opsonize bacteria in the midgut following blood-feeding 

(S58). In Fig S8, three 1:1:1 orthologous trios, and one mosquito-specific 1:1 orthologous pair 

can be identified, as well as possible recent duplications in Aa to form GALE6A/B and 

GALE8A/B. A more divergent group of GALEs consists of one Dm (CG14879), one Ag 

(GALE10), and three Aa (GALE12/13/14) GALEs. The conserved GALEs (shared by 

different insects) are most likely to play roles in processes such as cell fate determination and 

cell proliferation.  

 

Gram-Negative Binding Proteins: GNBPs (Fig S9) 

The GNBP/β-1,3-Glucan recognition family of proteins comprises members from several 

insects (S59). These proteins contain an N-terminal glucan binding domain and a C-terminal 

domain similar to β-1,3- and β-1,4- bacterial glucanases (S60). The Dm genome contains 

three unique GNBPs, sharing a 36% sequence homology between each other. GNBP1 has 

been proved both genetically and biochemically to be the co-receptor for Gram-positive 

bacteria along with PGRP-SA(S61, S62). Both the genomes of Ag and Aa have 7 GNBPs. 

These GNBPs can be classified into two subgroups: GNBPA and GNBPB. GNBPA1 and 

GNBPA2 are gene duplications with a higher homology to Dm GNBP1. Annotated sequences 

of mosquito GNBPBs however, indicate that this is a distinct sub-family of GNBPs unique to 

mosquitoes. Interestingly, the mosquito GNBPs show considerable conservation both between 

each other and with bacterial glucanases over the glucanase-like domain. This may point to 

the significance of a hydrolytic function of GNBPs to Gram-positive bacteria cell wall 
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components in invertebrate innate immunity. In Ag, GNBPB1 has been linked with resistance 

to P. berghei and E. coli infection, while it lacked activity against P. falciparum and S. aureus 

(S53). Our studies indicate a similar function for GNBP1 in the fly(S62). The N-terminal part 

of all GNBPs is much less conserved and shows a significant variation even within species. 

The exact function of this domain still remains unknown. In DmGNBP1, this region is 

speculated to have similar glucan binding activity as in its bacterial counterparts. Therefore, a 

variation of this region might constitute a diversity of the GNBPs in pathogen recognition. 

Indeed, from the microarray data, different Ag GNBPs responded to S. aureus infection with a 

significant up or down regulation compared to E.coli and B. bassiana challenge, indicating 

that Ag GNBPs might be also involved in the Gram-positive bacterial defense as in Dm. Aa 

GNBPs seemed to respond equally well to all three infections, making the roles of Aa GNBPs 

more illusive in its immune defense. 

  

Inhibitors of Apoptosis: IAPs (Fig S10) 

IAPs are characterized by a 70-residue domain, the baculoviral IAP repeat (BIR). In Dm, four 

IAPs were found with distinct domain architecture. DmIAP2 encodes a protein that has three 

N-terminal BIR (baculovirus IAP repeat) domains and a C-terminal RING-finger (Really 

Interesting New Gene) domain. Although the previously characterized IAPs were shown to be 

inhibitors of caspases (S63), it is unlikely that DmIAP2 directly inhibits DREDD. The 

depletion of DmIAP2 leads to disruption of the Imd pathway and did not result in an 

enhancement or constitutive expression of immune genes (S20, S21). In both Ag and Aa 

genomes, clear 1:1 orthologs of three Dm IAPs (DmIAP1, DmBRUCE and CG12265) were 

found. Whereas AgIAP2, the closest homolog of DmIAP2, was predicted to contain only one 

BIR domain, AaIAP2 contains three BIR domains and a C-terminal RING-finger, showing 

clear 1:1 ortholog relationship to DmIAP2. The phylogenetic tree is derived from the 

alignment of the BIR domains of IAPs from all three species, with domains labeled a, b, or c 

from the N to the C terminal of the respective proteins. The only BIR of AgIAP2 is shown as 

AgIAP2_domain c because it clusters with the c domain of DmIAP2 and AaIAP2. Domain a 

of AgIAP7 is not included in the tree as it is incomplete, although the partial sequence does 

cluster with AgIAP3/4_domain a. AgIAP8 and AaIAP9 have one BIR domain each, they are 

excluded from the tree as they disrupt the alignment, although AgIAP8 may cluster with 

domain c of IAP2.  
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Lysozymes: LYSs (Fig S11) 

Lysozymes are 14-16 kDa basic proteins that hydrolyze peptidoglycan of bacterial cell walls. 

In insects, both chicken-type (c-type) and invertebrate-type lysozymes occur. Many studies 

have shown increases in expression of c-type lysozyme genes and of increases in lysozyme 

activity following exposure to bacteria, especially in the Lepidoptera. Interestingly, Dm 

lysozymes show little response to bacterial infection (S64), although several genes were 

upregulated after infection by the microsporidian parasite, Octosporea (S65). Mosquito genes 

AgLYSC1 and AgLYSC2 and AaLys-A (LYSC11) are upregulated following bacterial 

challenge (S20, S66). Our analysis indicates that an expansion of the lysozyme gene family 

has occurred in dipteran flies. There are 13 genes in Dm, 8 in Ag and 7 in Aa. Expansion of 

the c-type lysozyme gene family also is found in foregut-fermenting vertebrates. For example, 

ten lysozyme genes occur in Bos taurus. In both invertebrates and vertebrates, expansion is 

partly due to the use of lysozymes for digestion of bacteria as a food resource. Dipteran 

insects are associated with moist habitats and often use bacteria as a food. Larval forms of the 

mosquitoes and larval and adult Dm fit this profile. Several of the Dm lysozymes are 

expressed in the gut and exhibit acidic pIs, which are presumed to be adaptations to a 

digestive function in the acidic gut environment(S67). AgLYSC3 and AgLYSC8 are expressed 

at much higher levels in larvae than in adults and are candidates for a role in digestion (S68), 

however, no orthologous enzymes were found in Aa. A second group of dipteran lysozymes is 

characterized by the loss of one of the two amino acids that are critical for muramidase 

activity. In five of these insect proteins, Asp52 (using vertebrate notation) is altered to Asn52, 

suggesting the intriguing possibility that these enzymes may become activated upon 

deglycosylation. Finally, each of the three species has one unusual, long lysozyme that 

contains 4 or 5 lysozyme domains, these are not shown on the tree. In Ag, LYSC6 is 

constitutively expressed throughout the life cycle and in many adult tissues (S68) but 

transcript levels were not altered following immune challenge. 

 

MD2-like Proteins: MLs (Fig S12) 

The MD2-Like gene family (MLs) code putative secreted proteins containing a lipid 

recognition domain (S69). MLs are essential for LPS mediated activation of TLR-4 signal 

transduction in mammals, and probably interact with other antigens as well through their lipid 

recognition domain (S70, S71). All the essential sequence features that have been linked to 

LPS and TLR-4 interaction are conserved between the AgML1 and vertebrate MD2 genes 

(S53). Recent studies have indicated AgML1 as a specific anti-P. falciparum factor that is 
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induced in the midgut by P. falciparum but not P. berghei infection (S53). AgML1 can also 

influence Ag resistance to bacteria infection and is therefore a likely broad spectrum pattern 

recognition receptor of the Ag innate immune system. Aa and Ag have 17 and 11 MLs gene 

family members, respectively, while Dm has only 8 members. The expansion of the mosquito 

gene family may indicate a specialized function in the defense against a blood meal ingested 

pathogen. Between the two mosquito species, this gene family shows quite significant 

diversity with only 4 orthologous pairs.  

  

Peptidoglycan Recognition Proteins: PGRPs (Fig S13) 

13 genes with 16 PGRP domains have been identified in Dm, Ag has seven genes with ten 

domains, and eight genes with nine domains were identified in Aa. Clear 3-way orthologous 

relationships could be determined for Aa genes with PGPPS1, PGRPLB, PGRPLC, PGRPLA, 

and PGRPLD. Surprisingly, there is an ortholog to PGRP-LE in Aa, but not in Ag. Due to lack 

of conservation outside the PGRP domain, most gene predictions of the PGRP family are 

restricted to the PGRP domain. AaPGRPLA appears to be a single domain PGRP domain 

gene like PGRP-LA in Dm – and unlike PGRPLA in Ag that possesses two PGRP domains. 

Determination of the gene architecture of AaPGRPLC is hampered by an unsequenced region 

of unknown size within the gene. As a result, AaPGRPLC was initially only predicted to have 

one instead of three PGRP domains, however this unsequenced region is likely to contain 

further domains. At least one was retrieved from the unassembled sequence reads of the 

genome project. Likewise, a PGRP domain of a potential ninth Aa (short) PGRP gene could 

be found in the unassembled sequences. However, it could not be determined if it represents a 

pseudogene or haplotype due to lack of coverage and size of this region. The tree is built from 

the alignment of the PGRP domains so that genes with multiple PGRP domains have more 

than one branch.  

  

Peroxidases: Heme[HPXs], Glutathione[GPXs], and Thioredoxin[TPXs] (Fig S14) 

Local generation of high levels of reactive oxygen species (ROS) is an important effector 

mechanism during an immune response. For example, myeloperoxidase (MPO) produces 

highly reactive ROS during the neutrophils respiratory burst. Increased systemic levels of 

hydrogen peroxide (H2O2) in Ag have been associated with melanotic encapsulation-mediated 

refractoriness to Plasmodium (S72). Heme-containing peroxidases (HPX) like MPO use H2O2 

as an electron acceptor to catalyze a number of oxidative reactions. Five highly similar 

members of this family are found in vertebrates, which are most homologous to the Dm 
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haemocyte peroxidasin and its mosquito orthologues, AgHPX4 and AaHPX4, suggesting that 

this subgroup expanded in vertebrates after their divergence from insects. Dual oxidases 

(DUOX) represent another group of vertebrate HPXs that combine a peroxidase with a 

NADPH-oxidase domain. These enzymes are expressed in various epithelia and are though to 

participate in local defense responses (S73). DUOX orthologs are present in Dm and 

mosquitoes. DmDuox silencing markedly increases the mortality rate of adult flies feeding on 

microbe-contaminated food (S74). The apoptotic response of Ag midgut cells to Plasmodium 

invasion involves peroxidase-mediated nitration, possibly associated with induced levels of 

AgDUOX (S75). The HPX family has greatly expanded in insects producing seven 

orthologous groups. A double peroxidase (DBLPX) is present in insects with two highly 

divergent N-terminal (DBLPX-N) and C-terminal (DBLPX-C) peroxidase domains. Each 

domain type has one-to-one orthologs in the different insect species. Most peroxidases have 

1:1 orthologues, but species-specific expansions have taken place in mosquitoes. ROS 

generated during the immune response are also potentially toxic to the host; it is therefore 

important that they be kept localized and rapidly neutralized. The thioredoxin and glutathione 

systems are important for protection against oxidative stress by reducing peroxides such as 

H2O2 to harmless products. The Dm and Ag genomes lack a glutathione reductase gene (GR) 

(S46), and functional studies indicated that glutathione is reactivated by Thioredoxin (S76). 

GR is also absent from Aa, suggesting that insects may only use the thioredoxin system. 

Surprisingly, genes with sequence homology to classic glutathione peroxidases (GPXs) are 

present in insects; two in Dm and three in mosquitoes. However, recent functional studies in 

Dm demonstrated that at least one of the two fly homologues (Gtpx-1) uses thioredoxin 

instead of glutathione as a substrate and is responsible for increased resistance to paraquat-

induced oxidative stress (S77). Orthologues of Gtpx-1 and a second Dm GPX homologue 

(GPXH) are also present in Ag and Aa and are likely to use thioredoxin as a substrate. A third 

mosquito-specific GPX is probably catalytically inactive. 

 

Prophenoloxidases: PPOs (Fig S15) 

We have assessed the transcription of 6 individual Aa PPO sequences. Most of them are 

transcribed during larval and pupal stages. Among them, AaPPO1 seems to be transcribed in 

the entire stages (larvae, pupae and adults), AaPPO2 and AaPPO3 are transcribed during early 

larval stages, and AaPPO4 and AaPPO6 are transcribed during both larval and pupal stages, 

but AaPPO5 seems expressed only in adults 12 hours after a blood meal. Individual PPOs are 

actually translated in the Aa. For example, AaPPO1, AaPPO2, AaPPO3, AaPPO4 and 
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AaPPO6 are translated in mosquito larvae and AaPPO5 is translated in adults following blood 

feeding. Transcriptional profiles of individual PPOs do not seem to be closely correlated to 

the level of their gene products. For example, transcripts of AaPPO2 and AaPPO3 were not 

detected in later stage larvae, but their proteins were isolated from 6-day old larvae. Some 

PPOs might be proteolytically processed at their carboxyl end, resulting in the cleavage of the 

last 120 some residues. Because an absence of these carboxyl side residues does not affect 

their catalytic function, the carboxyl end fragment in PPOs might be somewhat related to their 

tissue specific localization. The phylogenetic tree shows expansions with duplications in each 

of the mosquitoes with AgPPO1 and AaPPO6 being most closely related to the Dm PPOs.  

  

Rel-like NFkappaB Proteins: RELs (Fig S16) 

The REL transcription factors show 1:1:1 conservation for DmRelish/REL2, a duplication of 

REL1 in Aa, and the loss of Dif in the mosquitoes. Please refer to the main text where the 

roles of RELs in innate immunity are discussed in detail.  

  

Scavenger Receptors Class-A, Class-B, and Class-C (Fig S17) 

Scavenger receptors, originally defined by their ability to bind modified forms of low-density 

lipoprotein (S78), function also as pattern recognition receptors for infectious nonself 

(pathogens such as Gram-negative and Gram-positive bacteria through recognition of LPS 

and LTA by SCRA and Plasmodium-infected erythrocytes by SCRB) and modified self 

(apoptotic cells and modified LDL) (S79-81). The multidomain SCRs vary markedly in 

structure, including molecules with collagenous, cysteine-rich, C-type-lectin or other 

domains. Related molecules have been discovered in Dm, where they have been implicated in 

clearance of apoptotic cells and in innate immunity (S82-87). We considered three major 

classes named A, B and C. Macrophage class A scavenger receptors (SCRAs) contribute to 

host defence by binding polyanionic ligands such as lipopolysaccharide (LPS) and 

lipoteichoic acid (LTA). They have been implicated in the phagocytic recognition of 

unopsonized microorganisms (S81, S88, S89) and opsonized pathogens (S90). Some members 

of this subfamily contain a Scavenger Receptor Cysteine-Rich (SRCR) domains which, in a 

human protein (MARCO), binds both Gram+ and Gram- bacteria (S81). Like Dm and Ag 

(S27), our phylogenetic analysis identified five SRCR-containing proteins in Aa. Four 

orthologous trios exist between the fruitfly and the two mosquitoes. The numbers of SCRC 

domains of these molecules vary between different protein members. Additional domains like 

Lysyl oxidase (LOX), C-type lectin and others are also found among SCRAs. Interestingly, 
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many more SRCR-containing molecules are detected in mammals (e.g. 26 and 33 in human 

and mouse respectively) compared to insects. This is in contrast to SCRBs which are 

discussed below. Aa proteins SCRASP1, SCRASP2 and their Dm and Ag orthologs share a C-

terminal domain related to coagulation and inflammatory serine proteases and multiple LDL 

domains. Additional multiple chitin binding domains (CBD) are only detected in SCRASP1. 

Interestingly, the third serine-protease containing SCRA, SCRASP3, appears to have been 

lost from Dm. SCRAC has a partial C-type lectin domain, and the fourth group of SCRAs, 

SCRAL, matches the Lysyl oxidase (lox) domain of human Lox proteins (copper-containing 

amine oxidases that convert primary amines to reactive aldehydes). In Dm there are two 

SCRAL genes in contrast to one in each mosquito species. In conclusion, our SRCR domain 

analysis reveal that the ancestral genes had similar domain architecture with genes currently 

present in the three species, and multiple domains have not been acquired separately in each 

species during evolution. The only exception is AaSCRAL1, which appears to encode only 

one SRCR domain compared to its ortholog in the other two species; however, we believe that 

this is due to bad sequence quality. Class B scavenger receptors (SCRBs) are thought to be a 

novel class of scavenger receptors characterized by a CD36 domain. SCRBs have diverse 

ligand-binding properties including oxidized low density lipoproteins, long chain fatty acids, 

anionic phospholipids, collagen types I, IV and V, thrombospondin (TSP), P. falciparum 

infected erythrocytes and apoptotic cells. The interaction between the CD36-binding domain 

of PfEMP-1 (P. falciparum erythrocyte membrane protein 1) and CD36 receptor is important 

for parasite survival, and may be involved in modulation of the host's response (S91-93). 

Croquemort, a Dm haemocyte cell-surface receptor, is a member of the SCRB family and can 

bind apoptotic cells (S85, S86). In addition, DmPeste (Pes) is another CD36 family member 

required for uptake of mycobacteria, but not Escherichia coli or Staphylococcus aureus, 

which suggests a conserved role for SCRBs in pattern recognition and innate immunity (S87). 

Interestingly, there is a large expansion of the insect SCRB family compared to mammals. A 

total of 13 SCRBs were identified in fruitfly and in mosquitoes, whereas only three CD36-

containing proteins have been identified in human. As in mammalian systems, insect SCRBs 

are transmembrane proteins with two short transmembrane domains adjacent to their short N- 

and C-termini, respectively. One mosquito-specific phylogenetic clade (SCRBQ) includes six 

SCRBs, all of them being 1:1 orthologs. These genes are closely related to three Dm SCRBs 

including Croquemort. DmPes appears to have been lost in mosquitoes. The AgSCRB17 is the 

previously identified AgSCRBQ4 receptor (S27), which is now renamed according to the new 

phylogenetic analysis. Remarkably, AgSCRB16 is a newly annotated gene resulted from the 
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combination of AgSCRB2, AgSCRB4, AgSCRB12 (S27) and the ENSANGT00000031448 

transcript. The third class of scavenger receptors (SCRC) is specific for insects and originally 

founded by the DmSR-CI, DmSR-CII, DmSR-CIII and DmSR-CIV proteins (S83, S84). Like 

croquemort, DmSR-CI appears to be macrophage specific and recognizes a broad range of 

polyanionic ligands, much like the mammalian class A SR (S83). Nevertheless, there is no 

significant sequence homology between SCRAs and SCRCs. SCRC are transmembrane or 

secreted multidomain proteins that contain several sequence motifs, including two 

complement-control protein (CCP) domains followed by a MAM domain (Meprin A5 antigen 

and RPTP Mu), and usually a somatomedin-B-like (BO) domain. They are thought to 

function as PRRs in phagocytosis and innate immunity; CCP together with MAM can bind 

bacteria in vitro (S83, S84). AgSCRC1, the only Ag member of this class resembles DmSR-CI 

and DmSR-CII but, surprisingly, has two transmembrane domains at its N- and C-terminus, 

respectively. Two SCRCs (AaSCRC1 and AaSCRC2) were identified in Aa; both contain two 

CCP domains and one transmembrane domain at their C-terminus (like Dm), neither of them 

has a MAM domain.  

  

Serine Protease Inhibitors: SRPNs (Fig S18) 

Serpins are a very large family of serine protease inhibitors and are found in all higher 

eukaryotes as well as viruses and have a wide range of biological functions (S94). Serpins are 

structurally conserved suicide substrates. They can be found intra- as well as extracellularly, 

and are usually 350-400 amino acid residues long with a reactive center loop (RCL) that is 

located 30 to 40 residues from the C-terminal end. Their RCL binds to the active site of the 

specific target protease similar to the binding of a substrate. The protease cleaves the serpin at 

the scissile bond (indicated on the tree), and upon cleavage the serpin becomes covalently 

linked to the protease, which is irreversibly inhibited (S95). Serpins are involved in a large 

variety of biological processes such as blood-clotting and fibrinolytic cascades, inflammation 

and complement activation, tumor suppression, extracellular matrix maintenance or 

remodeling and apoptosis. In Dm, three serpins have been investigated in detail. Spn27A, an 

ortholog of M. sexta Serpin-3 controls the Toll pathway during early development (S96) and 

is an inhibitor of the melanization reaction, most likely by inhibiting PAPs in adult flies (S97, 

S98). Spn43Ac controls the Toll pathway during the immune response. (S99). The latest Dm 

serpin to be analysed is Spn4, which is an inhibitor of furin, a subtilisin-like convertase that is 

required for pro-protein maturation (S100, S101). A genome-wide analysis of immune 

response in Dm identified five additional serpins that are up-regulated and three that are down 
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regulated after septic injury. The Dm, Ag and Aa genomes contain coding sequences for 30, 

17 and 23 SRPNs, respectively. Based on the amino-acid composition of their RCLs we 

predict 17, 12 and 14 serpins to be active protease inhibitors. Since the original Ag SRPN 

annotation in 2002, we eliminated AgSRPN15 on the basis of misassembled sequence that had 

been corrected in later genome releases. AgSRPN13 (agCP12957) originally annotated in 

2002, is no longer present in the current assembly. However, RT-PCR results clearly indicate 

the gene to be present in the Ag genome (Kanost and Suwanchaichinda, unpublished). We 

also identified 4 additional serpins (AgSRPN16-19), which brings the total number of Ag 

SRPNs to 18. Of these, five serpins occur as isolated genes in the genome, but most of serpins 

are organized into four clusters located at 2R8A, 2L26A, 2L28D, and 3R33C, each cluster 

containing three SRPNs. The most striking finding is that all but one Ag SRPN have a clear 

ortholog in the Aa genome. In contrast, only two 1:1:1 orthologs shared by all three species 

can be found, namely Spn100A/SRPN12, and Spn85F/SRPN19, both of which are non-

inhibitory serpins. Unfortunately, the functions of these Dm genes remain to be identified. All 

Ag sequences within the SRPN2 and mosquito-specific expansion cluster have 1:1 orthologs 

in Aa (S102, S103) and do not contain any additional Aa serpins. SRPN4 is alternatively 

spliced in Aa and Ag, however the gene encodes two additional isoforms of which one has 

arisen through an additional duplication in the Aa lineage. The Aa genome contains six 

additional serpins, of which four are located within the same chromosomal region (contig 

1.65) and physically cluster with AaSRPN7 and AaSRPN14. The corresponding chromosomal 

location in Ag is 2L28D, which contains the orthologs of SRPN7 and 14 as well as 

AgSRPN18, the only gene without an ortholog in Aa. Serpins are well conserved within the 

mosquito lineage, which will help functional analysis of the family. Genes contained within 

the mosquito-specific expansion cluster as well as in the chromosomal clusters discussed 

above, will be of special interest, as their recent diversification might reflect adaptation to 

specific environmental challenges that mosquitoes encounter. 

 

Späetzle-like Proteins: SPZs (Fig S19) 

The cleavage of Dm Späetzle results in binding of the product to the Toll receptor and 

subsequent activation of the Toll pathway. The phylogenetic tree is built from the alignments 

of the conserved cystine knot domain (InterPro: IPR006208). AgSPZ1 does not contain this 

domain and is therefore excluded from the tree. Among the SPZs there is a high level of 

conservation with 1:1:1 orthologous relationships for SPZ2, SPZ4, SPZ5, and SPZ6, and a 

duplication of SPZ3 in Aa. Interestingly, three DmSpz-like proteins are found in Aa.  
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Superoxide Dismutatses: SODs (Fig S20) 

Superoxide anion (·O2
-) is generated by NADPH oxidase as part of the oxidative burst in 

activated macrophages. Superoxide dismutases (SODs) convert ·O2
- into hydrogen peroxide 

(H2O2), a less toxic product. Eukaryotic MnSODs are typically nuclear-encoded 

mitochondrial enzymes, while Cu/ZnSODs are cytosolic. These two SOD classes appear to 

have evolved independently, as they share no sequence homology. MnSODs are single copy 

genes in Dm and Ag, but Aa has a second gene that appears to be diverging faster than the 

ancestral one. There are three Cu/Zn SODs with one-to-one orthologues in mosquitoes and 

Dm. Interestingly, the AgSOD3a and AgSOD3b transcripts are products of a single gene that 

share a common N-terminal exon and differ in their second exon, which codes for the 

catalytic domain. This duplication of the second exon in SOD3 is unique to mosquitoes.  

  

Thio-Ester Containing Proteins: TEPs (Fig S21) 

The family of thioester-containing proteins (TEPs) comprises vertebrate complement factors 

C3/C4/C5 and the pan protease inhibitors α2-macroglobulins, which are involved in pathogen 

recognition and activation of immune responses. Insect TEPs could be separated in two main 

groups: (i) the highly conserved orthologous trio (DmTep6/AgTEP13/AaTEP13) and (ii) 

much more divergent sequences mostly grouped in species-specific expansions. The group of 

the three orthologous TEPs is supported by the presence of additional sequence stretches 

absent from other TEPs. Interestingly these three TEPs do not have the thioester motif 

(marked with "TE" on the tree) that gives name to the family. The more divergent TEPs are 

split in two groups: one comprising both Dm and mosquito sequences, all of them bearing the 

thioester. The second group contains only mosquito TEPs which are divided in species-

specific expansions. In this group, some TEPs have lost their thioester motif. The best 

characterized insect TEP, AgTEP1, binds to pathogen surfaces and promotes phagocytosis of 

bacteria by mosquito blood cells and killing of Plasmodium parasites (S104-106). It belongs 

to the Ag-specific expansion, with no clear 1-1 ortholog in Aa.  

  

Toll Receptors: TOLLs (Fig S22) 

Genes of the Toll family encode single-pass transmembrane proteins with leucine rich repeats 

(LRR) interspersed with cysteine knots in the extracellular domain and an intracellular Toll-

interleukin 1 receptor (TIR) domain. Some members have carboxyl extensions with various 

sequence motifs. Toll was originally identified in Dm as a key player in dorsal-ventral 

patterning during embryonic development (S107). It was found later that DmToll was 
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required for antifungal immune responses (S108). Genomic analysis found eight other related 

genes in the Dm genome. In mammals, different Toll related genes have been implicated in 

responses to various bacterial pattern molecules. A total of nine Toll related genes have been 

found in Dm, with DmToll, DmToll-5 and DmToll-9 showing antifungal activities (S109-

111). The same set of genes is apparently conserved in D. simulans, D. virilis, D. mojavensis 

and D. erectus. Duplications of T3/T4 have been observed in D. pseudoobscura, D. 

persimilis, and D. ananasse. Ten Toll related genes have been identified in Ag (S112). There 

are only four orthologs between these two dipterans. There are species specific expansions 

and apparent gene duplications, forming orthologous groups (S27). An important difference is 

the presence of four Toll1 related genes (TOLL1A/1B/5A/5B) in Ag and only two (Tol1 and 

Toll-5) in Dm. In Aa, there are a total of 12 Toll related genes. Between Aa and Ag, there is a 

complete 1:1 correspondence of TLR genes, except for an apparent gene duplication that 

results in two Toll-9 related genes and the presence of a homologue of DmToll-3/Toll-4. 

Interestingly, one of the Toll-9 genes, AaTOLL9B, has three introns in the TIR domain, 

compared to 2 in other dipteran Toll-9 genes. At least seven TLR genes are found in 

Tribolium castaneum. Two additional sequences may represent polymorphism in Toll-1 gene 

of T. castaneum. At least 11 TLR genes have been identified in Bombyx mori. And an 

addition TLR gene may be present in B. mori, although it may also be the results of bad 

assembly of TOLL-2 and TOLL-2B sequences. Five TLR genes are found in Apis mellifera. It 

is clear that all insect species sequenced thus far posses at least one Toll-1. Another 

widespread TLR orthologue group is made of the Toll-9 genes. Toll-9s, which are quite 

distinct from other insect TLRs, have been found in Lepidoptera (Bombyx mori) and 

Coleoptera (Tribolium castaneum). It was therefore likely present before the split between 

protostomia and deuterostomia and is probably present in all insect species.  
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Gene Nomenclature:  

This study identified a substantial number of genes in Aa, and many previously un-named 

genes in Ag, and a small number of genes that required refinement and renaming. We named 

the genes in accordance with provisional nomenclature rules devised for the Ag immunity 

gene family analysis (S27) and additional rules devised to undertake the naming of Aa genes.   

  

The rules from the Ag immunity gene family analysis are as follows:  

1. The names are mnemonic symbols, designed for easy recall. They do not aim to 

summarize all current information, which in any case is incomplete and subject to errors 

(orthology, function, chromosomal location).  

2. To avoid errors in electronic communication all names consist exclusively of capital 

letters of the Latin alphabet and Arabic numerals; no punctuation marks, dashes etc. are 

used.  

3. To minimize the length the formal names do not include taxonomic initials. If similarly 

named genes of two organisms are being compared, taxonomic initials can be added for 

convenience, but do not constitute part of the name (e.g. AgTEP to be easily distinguished 

from DmTep).  

4. Roman letters and numerals indicate protein, italics indicate gene or RNA.  

5. The name is based on sequence similarities and carries no functional implications, this 

must be determined experimentally.  

6. The name consists of two to three contiguous fields, as follows: - The first field includes 

three to five letters and is an abbreviation of the highest sequence grouping used, usually a 

protein family, e.g. CLIP (for Clip-domain serine protease). - The second field, if present, 

includes one or more letters identifying a subgroup such as subfamily (e.g. CLIPD), or 

class (e.g. SCRB). - The third field enumerates each gene by using consecutive numerals 

(e.g. SCRB1,… 12). - Sometimes the third field numeral can be preceded by letter(s) 

indicating gene types within a subgroup (e.g. SCRBQ1, for a gene belonging to the SCRB 

Class, and to the croquemort type). - For historical reasons, in certain families, the third 

field can also enumerate by letters rather than numerals (e.g. PGRPLA, for gene A of the 

Long subfamily in the PGRP family).  

7. It is recommended that names previously used in the literature or in database submissions 

be gradually replaced by systematic names, following consultation with the original 

author. Historical names or names that may be developed eventually to indicate 

experimentally verified function or orthology can be used as synonyms.  
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Additional nomenclature rules devised to undertake the naming of Aa genes:  

1. Where orthology is clear (robust bootstrap support) in the gene tree, Aa genes will be 

named according to their Ag orthologs. Where orthology is tentative in the gene tree, it 

can be further investigated by examining the specific clade to decide whether there is 

enough confidence to assign orthology.  

2. Where Aa expansions relative to an Ag gene are clear (robust bootstrap support) in the 

gene tree, Aa genes will be named using the number from the corresponding Ag gene, 

suffixed with uppercase letters A, B, C etc. E.g. AgSPZ3 and AaSPZ3A, AaSPZ3B, etc.  

3. The remaining Aa genes which are neither clear orthologs (point A above), nor clear 

expansions (point B above) relative to Ag, will be named according to the rules defined in 

points 1-7 above, starting with the number following the highest number assigned to an 

Ag gene.  
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Section 3: Figures and legends 

Figure S1A: The Gene Ontology analysis indicated that different functional groups exhibit a 

wide spectrum of divergence levels similar to that observed for the individual trio orthologs 

presented in Fig. 1A (although not as extreme, due to the effects of averaging over each 

functional group). Testing for significance as we did for our immune repertoire we find many 

highly and significantly conserved functional groups and few that are highly and significantly 

divergent (Fig S1A, p<0.05). The data for the 30 most divergent and 30 most conserved 

groups are presented in Table S2. There are obvious differences between our intensive 

manual curation which has defined the evolutionary dynamics of the immune repertoire and 

the GO categorization of biological functions; nevertheless, this analysis confirms that 

immunity is remarkably divergent. 

 

Figure S1B: The cumulative frequencies of the Dm-Ag and Dm-Aa distances are plotted for 

the four datasets of 1:1:1 trios: AgAll, AaAll, AgImmunity, and AaImmunity. This figure 

supports the elevated diversity reported for the immunity versus the non-immunity trios, and 

the lower substitution rate for Aa compared Ag. 

 

Figures S2-22: The phylogenetic trees presented in figures S2-22 are constructed using the 

Neighbor-Joining algorithm (ClustalW) from full sequence or domain-only sequence 

alignments computed using Muscle or HMMER as required. Robustness of the resulting trees 

was estimated with bootstrap analysis of 1000 samples. Drosophila melanogaster proteins 

(blue) are presented with names or CG-numbers, while assigned names are presented for all 

Anopheles gambiae (red) and Aedes aegypti (yellow) proteins. Branches with low bootstrap 

support indicate uncertainty with respect to the placement of the branch and therefore only 

bootstrap values of 500 or above are shown. Bootstrap supported 1:1:1 orthologous trios are 

indicated with a filled black circle, and 1:1 mosquito orthologous pairs are indicated with an 

unfilled black circle. The supporting texts describe relevant additional information on each 

immune-related family presented in Figures S2-S22. Additional labels for particular figures 

are explained in the relevant texts.  
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Section 4: Tables and legends 

Table S1: The table displays the number of genes in each species, the number of 1:1:1 

orthologous trios and mosquito 1:1 orthologous pairs, and the total number of genes across 

the three species (Drosophila melanogaster, Dm; Anopheles gambiae, Ag; Aedes aegypti, 

Aa), for each immune-related gene (sub)family or signaling pathway.  

 

Gene Family or Pathway Dm Ag Aa 1:1:1 1:1 Total
Attacins (ATTs) 4 1 1 0 0 6
Caspases (CASPs) 7 14 10 2 2 31
Catalases (CATs) 2 1 2 0 0 5
Cecropins (CECs) 5 4 10 0 1 19
CLIP-domain Serine Proteases A (CLIPAs) 11 15 6 3 1 32
CLIP-domain Serine Proteases B (CLIPBs) 14 20 36 3 5 70
CLIP-domain Serine Proteases C (CLIPCs) 7 8 12 0 4 27
CLIP-domain Serine Proteases D (CLIPDs) 10 7 8 5 0 25
CLIP-domain Serine Proteases E (CLIPEs) 3 6 5 0 0 14
C-Type Lectins (CTLs) 34 25 39 9 1 98
Defensins (DEFs) 1 4 4 0 0 9
Fibrinogen-Related proteins (FREPs) 14 61 37 2 3 112
Galectins (GALEs) 6 10 12 3 1 28
Glutathione Peroxidases (GPXs) 2 3 3 2 1 8
Gram-Negative Binding Proteins (GNBPs) 3 7 7 1 4 17
Heme Peroxidases (HPXs) 10 18 12 8 1 40
IMD Pathway Members 5 5 6 4 0 16
Inhibitors of Apoptosis (IAPs) 4 8 5 4 0 17
JAK/STAT Pathway Members 3 4 3 2 0 10
Lysozymes (LYSs) 13 8 7 1 1 28
MD2-like Proteins (MLs) 8 11 17 2 2 36
Other Anti-microbial Peptides (AMPs)* 11 1 3 0 1 15
Peptidoglycan Recognition Proteins (PGRPs) 13 7 8 5 0 28
Prophenoloxidases (PPOs) 3 9 10 0 3 22
Rel-like NFkappa-B Proteins (RELs) 3 2 3 1 0 8
Scavenger Receptors Class-A (SCRAs) 5 5 5 4 1 15
Scavenger Receptors Class-B (SCRBs) 13 13 13 8 5 39
Scavenger Receptors Class-C (SCRCs) 4 1 2 0 1 7
Serine Protease Inhibitors (SRPNs) 30 17 23 2 14 70
Späetzle-like Proteins (SPZs) 6 6 9 4 0 21
Superoxide Dismutatses (SODs) 4 5 6 4 1 15
Thio-Ester Containing Proteins (TEPs) 6 13 8 1 1 27
Thioredoxin Peroxidases (TPXs) 8 5 5 4 1 18
Toll Pathway Members 4 4 4 4 0 12
Toll Receptors (TOLLs) 9 10 12 3 2 30
Totals 285 338 353 91 57 976

* Diptericins, Drosomycins, Drosocin, Metchnikowin, Gambicin, Holotricin 
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Table S2: The data for the 30 most divergent and 30 most conserved groups from the Gene 

Ontology analysis presented in Figure S1A. GO accession numbers are provided with their 

descriptions, together with the number of proteins assigned to each term, the Dm-Ag and Dm-

Aa averages, and the p-values from the Wilcoxon rank sum tests (see methods). 

 
GO Accession Number of 

Members 
Dm-Ag 
Distance 

Dm-Aa 
Distance 

GO Term Description p-value (Ag) p-value (Aa) 

GO:0051053 11 1.3782 1.2829 negative regulation of DNA 
metabolic process  

7.076e-03 1.368e-02 

GO:0002252 13 1.2794 1.2260 immune effector process 1.462e-02 1.955e-02 
GO:0007131 11 1.2499 1.2732 meiotic recombination 4.977e-03 6.515e-03 
GO:0006518 11 1.2392 1.1994 peptide metabolic process 8.306e-03 7.180e-03 
GO:0000077 11 1.2024 1.2379 DNA damage checkpoint 2.835e-02 3.511e-02 
GO:0007280 11 1.1956 1.0541 pole cell migration 8.456e-02 3.440e-01 
GO:0005179 16 1.1845 1.1630 hormone activity 9.399e-03 4.870e-03 
GO:0003725 15 1.1480 1.0288 double-stranded RNA 

binding 
2.355e-02 8.486e-02 

GO:0007259 11 1.1438 1.0895 JAK-STAT cascade 2.164e-01 3.037e-01 
GO:0007291 12 1.1427 1.0922 sperm individualization 1.175e-01 1.773e-01 
GO:0006275 13 1.1329 1.0565 regulation of DNA replication 3.137e-01 4.023e-01 
GO:0046620 16 1.1276 1.1255 regulation of organ size 3.366e-02 2.969e-02 
GO:0000059 12 1.1121 0.9778 protein import into nucleus, 

docking 
5.294e-02 1.703e-01 

GO:0000793 17 1.0832 1.0088 condensed chromosome 1.092e-02 4.460e-02 
GO:0003684 12 1.0827 1.0411 damaged DNA binding 5.954e-02 6.862e-02 
GO:0005044 12 1.0682 1.0341 scavenger receptor activity 4.327e-02 3.769e-02 
GO:0007031 12 1.0600 1.0445 peroxisome organization 

and biogenesis 
1.617e-02 2.252e-02 

GO:0004520 15 1.0541 1.0070 Endodeoxyribonuclease 
activity 

2.059e-02 2.508e-02 

GO:0042742 16 1.0535 1.0299 defense response to 
bacterium 

1.092e-01 1.079e-01 

GO:0007530 22 1.0350 1.0005 sex determination 6.038e-02 6.151e-02 
GO:0008083 14 1.0292 0.9510 growth factor activity 1.173e-01 2.151e-01 
GO:0020037 21 1.0258 1.0215 heme binding 2.201e-01 2.092e-01 
GO:0016705 15 1.0172 1.0824 oxidoreductase activity, 

acting on paired donors, 
with incorporation or 
reduction of molecular 
oxygen  

9.485e-02 6.442e-02 

GO:0016324 11 0.9860 0.9476 apical plasma membrane 5.356e-01 5.041e-01 
GO:0005778 11 0.9848 0.9391 peroxisomal membrane 1.335e-01 1.586e-01 
GO:0019730 25 0.9842 0.9334 antimicrobial humoral 

response 
2.076e-01 1.879e-01 

GO:0008063 15 0.9809 0.9092 Toll signaling pathway 3.043e-01 3.980e-01 
GO:0000922 14 0.9780 0.9075 spindle pole 1.453e-01 2.725e-01 
GO:0042078 16 0.9550 0.9085 germ-line stem cell division 9.798e-01 7.835e-01 
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GO:0016319 17 0.4296 0.4597 mushroom body 

development 
3.631e-04 2.965e-03 

GO:0017157 33 0.4272 0.4128 regulation of exocytosis 1.141e-07 5.927e-08 
GO:0045211 15 0.4270 0.4194 postsynaptic membrane 3.174e-04 5.058e-04 
GO:0006898 34 0.4260 0.4285 receptor-mediated 

endocytosis 
1.656e-07 3.080e-07 

GO:0043176 12 0.4254 0.4119 amine binding  2.625e-03 2.983e-03 
GO:0009408 12 0.4233 0.4201 response to heat 1.790e-03 2.514e-03 
GO:0007222 14 0.4219 0.4246 frizzled signaling pathway 1.330e-03 2.162e-03 
GO:0005262 11 0.4188 0.4246 calcium channel activity 2.846e-03 5.688e-03 
GO:0006936 53 0.4173 0.4067 muscle contraction 1.298e-12 1.364e-11 
GO:0007270 24 0.4080 0.3994 nerve-nerve synaptic 

transmission 
3.564e-06 6.360e-06 

GO:0006073 11 0.4069 0.3766 glucan metabolic process  2.028e-03 1.431e-03 
GO:0003924 79 0.3943 0.3698 GTPase activity 1.629e-02 1.629e-02 
GO:0005525 107 0.3933 0.3787 GTP binding 3.705e-10 3.705e-10 
GO:0006471 13 0.3922 0.3920 protein amino acid ADP-

ribosylation 
9.168e-04 1.417e-03 

GO:0016917 11 0.3890 0.3950 GABA receptor activity 1.468e-03 2.539e-03 
GO:0000271 14 0.3884 0.3561 polysaccharide biosynthetic 

process 
1.958e-04 1.047e-04 

GO:0008553 20 0.3833 0.3886 hydrogen-exporting ATPase 
activity, phosphorylative 
mechanism 

8.107e-06 2.152e-05 

GO:0016185 12 0.3760 0.3891 synaptic vesicle budding 1.059e-04 1.354e-04 
GO:0010033 14 0.3689 0.3414 response to organic 

substance 
1.932e-04 1.393e-04 

GO:0009532 11 0.3568 0.3166 plastid stroma  3.279e-04 1.304e-04 
GO:0008064 12 0.3361 0.3150 regulation of actin 

polymerization and/or 
depolymerization 

1.582e-04 1.054e-04 

GO:0006510 12 0.3355 0.3095 ATP-dependent proteolysis 1.165e-04 6.695e-05 
GO:0004693 11 0.3329 0.3388 cyclin-dependent protein 

kinase activity 
1.657e-04 3.101e-04 

GO:0005838 17 0.3313 0.3175 proteasome regulatory 
particle (sensu Eukaryota) 

4.404e-06 4.319e-06 

GO:0050803 11 0.3264 0.3183 regulation of synapse 
structure and activity 

1.404e-04 1.663e-04 

GO:0044449 11 0.3225 0.3772 contractile fiber part 1.020e-04 1.083e-03 
GO:0045172 13 0.2905 0.2970 germline ring canal 1.120e-05 2.190e-05 
GO:0031202 15 0.2705 0.2838 RNA splicing factor activity, 

transesterification 
mechanism 

7.358e-07 3.465e-06 

GO:0005843 16 0.2620 0.2458 cytosolic small ribosomal 
subunit (sensu Eukaryota) 

1.390e-07 1.074e-07 

GO:0016471 12 0.2426 0.2538 hydrogen-translocating V-
type ATPase complex 

4.148e-06 9.518e-06 
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