Linkage map organization of expressed sequence tags and sequence tagged sites in the mosquito, *Aedes aegypti*

D. W. Severson, J. K. Meece, D. D. Lovin, G. Saha and I. Morlais

Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA

Abstract

A composite genetic linkage map for the yellow fever mosquito Aedes aegypti was constructed based on restriction fragment length polymorphism (RFLP), single nucleotide polymorphism (SNP) and single strand conformation polymorphism (SSCP) markers. The map consists of 146 marker loci distributed across 205 cM, and includes several morphological mutant marker loci. Most of the genetic markers are derived from random cDNAs or Ae. aegypti genes of known function. A number of markers are derived from random genomic DNAs, including several cloned RAPD-PCR fragments, and also several cDNAs from Drosophila melanogaster. Most of the random cDNAs (80.2%) have high BLASTX sequence identities to known genes, with the majority of matches to genes from D. melanogaster. Access to sequence data for all markers will facilitate their continued development for use in high-throughput SNP marker analyses and also provides additional physical anchor points for an anticipated genome sequencing effort.

Keywords: EST, genomics, RFLP, SNP, SSCP.

Introduction

The yellow fever mosquito *Aedes aegypti* remains one of the most intensively studied insects – which is largely a consequence of its direct role as vector for a variety of human pathogens – as well as being an excellent laboratory model for investigating the genetics of vector/pathogen interactions. The first detailed DNA marker-based genetic

© 2002 The Royal Entomological Society

map for Ae. aegypti was constructed using restriction fragment length polymorphism, or RFLP markers (Severson et al., 1993). This map consisted of 50 DNA markers that identified 53 RFLP loci across the three linkage groups. Most of these RFLP markers were random cDNA clones or cDNAs of known genes. This map also included several morphological mutant marker loci that allowed its partial integration with an existing genetic map based on meiotic recombination among isozyme and morphological mutant marker loci (Munstermann & Craig, 1979). These and additional RFLP markers have since been applied toward the identification of quantitative trait loci (QTL), influencing Ae. aegypti competence to vector the malarial parasite, Plasmodium gallinaceum (Severson et al., 1995a), and the lymphatic filarioid nematode parasite, Brugia malayi (Beerntsen et al., 1995; Severson et al., 1994a). More recently, Fulton et al. (2001) have employed single strand conformation polymorphism (SSCP) analysis to identify single nucleotide polymorphisms (SNP) in cDNA sequences among segregating populations of Ae. aegypti and map them genetically. Finally, because Ae. aegypti cDNA sequences are highly conserved across mosquito species (Severson et al., 1994b), they have been used to construct comparative RFLP linkage maps for several culicine species, including Aedes albopictus (Severson et al., 1995b), Armigeres subalbatus (Ferdig et al., 1998), Culex pipiens (Mori et al., 1999), Culex tritaeniorhynchus (Mori et al., 2001) and Ochlerotatus (formerly Aedes) triseriatus (Anderson et al., 2001).

Because of its importance as a disease vector, *Ae. aegypti* is a good candidate for a systematic genome sequencing project (Knudson *et al.*, 2002). Success in sequencing the *Drosophila melanogaster* genome demonstrated the feasibility of such projects, but also illustrated that while sequencing technology has advanced rapidly, genome projects involving large genomes remain dependent on the availability of a physical scaffold for global assembly (Adams *et al.*, 2000). Integration of the *Ae. aegypti* genetic and physical maps using fluorescent *in situ* hybridization (FISH) technology represents an important step towards defining the basic genome architecture in terms of putative euchromatic and heterochromatic regions (Brown *et al.*, 2001). To date, however, only a small number

Received 28 January 2002; accepted after revision 14 May 2002. Correspondence: Dr David Severson, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA. Tel.: +1 574 631 3826, fax: +1 574 631 7413, e-mail: David.W.Severson.1@nd.edu

of the genetically mapped RFLP markers have been reported as physical landmark sequences (Severson & Zhang, 1996). Here we report an updated linkage map for *Ae. aegypti*, based largely on RFLP markers, but also including a small number of SNP and SSCP markers, and present an inventory of sequence information for the associated cDNA and genomic clones as expressed sequence tags (EST) and sequence tagged sites (STS), respectively. Putative identities for our random ESTs, based on BLAST analysis, are included.

Results and discussion

The composite linkage map for *Ae. aegypti* consists of 146 marker loci distributed across 205 cM (Fig. 1). The map also includes the Sex determination (Sex) locus on linkage

Figure 1. Composite RFLP, SNP and SSCP genetic linkage map for *Aedes aegypti*. Map distances are listed in Kosambi centiMorgans. All markers were mapped as RFLP loci except those indicated by '()'. (1) = SNP only, (2) = SSCP only, (3) = SNP and RFLP, (4) = SSCP and RFLP, (5) = SSCP and SNP (6) morphological.

group (LG) I and 5 morphological mutant marker loci, red eye (*re*) and bronze (*bz*) on LG I, Silver mesonotum (*Si*) and spot abdomen (*s*) on LG II, and black tarsus (*blt*) on LG III (see Munstermann & Craig, 1979). The linear orders for many of these markers have repeatedly been confirmed across multiple segregating populations. Discrepancies have only been observed among tightly linked loci that most likely reflect the quality of the individual data sets. That is, for such loci, sample size within individual mapping populations or a single mis-typed individual can alter the outcome of multipoint linkage analyses. Furthermore, because the map was constructed from composite data, all

 Table 1.
 Known genes mapped as RFLP, SNP or

 SSCP marker loci
 SSCP marker loci

Clone ID	Chromosome	Gene*	
Aedes aegypt	ti clones:		
CHT2	I	Chitinase (AF026492)	
Ace	I	Acetylcholinesterase (AAB35001)	
AEG12	II	Protein G12 (AY038041)	
AeW	1	White-eye (U73826)	
Amyl	II	Salivary gland amylase (AF000569)	
Amyll	I. I.	Midgut amylase (AF000568)	
APN	I. I.	Aminopeptidase N (AF378117)	
apoLp-II	III	Apolipophorin II (AF038654)	
Apy1	III	Apyrase 1 (L12389)	
CaMKII	I.	Calcium/calmodulin dependent protein kinase (AF311726)	
CRALBP	II	Cellular retinaldehyde-binding protein (AF329893)	
Chym	II	Chymotrypsin (AY038039)	
		Ae. aegypti LF173 EST (BM005481)	
CYP9J2	III	Cytochrome P450 CYP9J (AF329892)	
D7	II	Salivary gland protein (M33156)	
Dce1	I	Dopachrome conversion enzyme (AF288384)	
DDC	II	Dopadecarboxylase (U27581)	
def	III	Defensin (AF156088)	
		Ae. aegypti LF283 EST (BM005517)	
Ef2	II	Elongation factor 2 (AY040342)	
FerH	1	Ferritin heavy chain (AF326341)	
GS1	Ш	Glutamine synthetase (AF004351)	
LAP	1	Lysosomal aspartic protease (M95187)	
Mall	Ш	Maltase-like enzyme (M30442)	
MUCI	Ш	Mucin-like protein (AF308862)	
		Ae. aegypti LF398 EST (BM378048)	
nAcBP	1	Nucleic acid binding protein (AY040341)	
NaK	1	Sodium/potassium ATPase (AF393727)	
NicPhRT	Ш	Nicotinate phosphoribosyltransferase (AF395330)	
PABP	III	Polyadenylate-binding protein (AY038043)	
para	III	DDT/pyrethroid resistance (AF468968)	
PGK	II	Phosphoglycerate kinase (AY043171)	
Rdl	II	Cyclodiene resistance (U28803)	
RpL17A	II	Ribosomal protein L17A (AF315597)	
		Ae. aegypti LF355 EST (BM005513)	
RpL31	III	Ribosomal protein L31 (AF324863)	
SDR	II	Short chain dehydrogenase/reductase (AY033621)	
Sec61	II	Transport protein Sec61 alpha subunit (AF326338)	
Sial	I	Sialokinin I (AF108099)	
slo	I	Slopoke (AF443282)	
Tfs	I	Transferrin (AF019117)	
		Immune-expressed polypeptide D6.12 (U11235)	
		Ae. aegypti LF235 EST (BM005471)	
TrypB	Ш	Trypsin (M77814)	
VCP	11	Vitellogenic carboxypeptidase (L46594)	
VC	11	Vitellogenin convertase (L46373)	
VMP15a-3	II	Vitelline membrane protein (U91682)	
Drosophila m	elanogaster clones:		
Hsp83	li l	Heat shock protein 82/83 (X03810)	
Rp49	Ш	Ribosomal protein 49 (X00848)	
Scr	I	Sex combs reduced (X05228)	
wg	Ш	Wingless (M17230)	
-			

*A representative accession number is provided, also indicating in some cases, those genes initially mapped as unknown function ESTs. For some genes, multiple accessions are available in the GENBANK database.

Table 2. Mapped random ESTs with best BLASTX identity matches

Clone ID	Best match GENBANK ID	Gene description	Organism	%AA identity	%AA similarity	BLASTX <i>E</i> -value
Chromosome I						
AEGI22 BI099650	None					
AEGI30 BI096856	None					
AEGbS11 AY033622	None					
LF90 T58320	sp. P14130	Ribosomal protein S14	Drosophila	87% (49/56)	92% (52/56)	7e-22
LF99b BM005477	gb AF194819	Heat shock cognate protein 79 protein	Manduca sexta	72% (113/155)	78% (123/155)	8e-55*
LF101 BM005475	sp. P45842	Ribosomal protein L34	Aedes albopictus	85% (102/120)	90% (109/120)	1e-52
LF150 BM005476	dbj AB032721	<i>Pol</i> protein	Bombyx mori	54% (31/57)	76% (44/57)	3e-16†
LF159 T58315	sp. P29692	Translation elongation factor 1-delta	Human	59% (43/72)	84% (61/72)	7e-10*,†
LF178 T58309	sp. O61231	QM protein	Drosophila	94% (136/144)	96% (139/144)	1e-77
LF179 BM005479	gb AF145656	Beta-coat protein	Drosophila	92% (102/110)	96% (107/110)	1e-61
LF188a BM005472	ab AF148814	Translation elongation factor 1-gamma	Drosophila	86% (32/37)	94% (35/37)	1e-30
LF189b BM005474	sp. Q24154	Ribosomal protein L29	Drosophila	64% (49/76)	77% (59/76)	2e-20
LF198 T58319	sp. P28331	NADH-ubiguinone oxidoreductase	Human	87% (34/39)	87% (34/39)	3e-27
LF204 BM378050	ab/AE003732	CG15697 gene product	Drosophila	89% (51/57)	92% (53/57)	7e-16*
LF217 BM005473	ab AF161709	Ferritin G subunit precursor	Calpodes ethlius	45% (20/44)	60% (27/44)	5e-04
LF230 T58326	dbilAB030307	Haustellum specific protein	Sarcophaga peregrina	38% (35/91)	56% (52/91)	5e-09†
LF231 BM005478	sp. P49630	Ribosomal protein L36	Drosophila	100% (36/36)	100% (36/36)	1e-12
LF284 BM005502	sp./P09180	Ribosomal protein L4	Drosophila	68% (74/108)	84% (92/108)	6e-40
LF314 BM005509	sp. P40945	ADP-ribosvlation factor 2. Art2	Drosophila	90% (102/113)	96% (109/113)	2e-56
LF397 BM378051	sp. Q15356	Small nuclear ribonucleoprotein F	Human	86% (56/65)	95% (62/65)	1e-28
Chromosome II						
BA67 AI561370	ab AF024603	Transcriptional co-repressor SIN3A	Drosophila	65% (143/218)	81% (180/218)	1e-80
AEGI8 AE326340	gb/AE309553	Meiotic recombination protein BEC14	Human	53% (175/330)	70% (234/330)	5e-86*
AEGI23/AY033624	None				1010(2010000)	
AEGI27/BG937399	None					
ABC1/B19561	None					
I F98/T58313	ab/AE062077	Syntaxin 8	Human	41% (27/65)	71% (47/65)	1e-11†
L F115/B67978	gil548749	Bibosomal protein L 18	Human	72% (36/50)	90% (45/50)	3e-15
L F124IT58324	sn P47904	Bibosomal protein S27	Xenopus	84% (53/63)	88% (56/63)	8e-28
L F129/BM005504	sp. 061462	Bibosomal protein L37A	Cryptochiton stelleri	85% (76/89)	90% (81/89)	2e-33*
L F138 T58332	sp Q27268	BNA helicase	Drosophila	93% (57/61)	97% (60/61)	1e-27
L F158 BM005485	sp. P23358	Bibosomal protein I 12	Bat	77% (80/103)	88% (92/103)	76-44
L F169 BM378049	None		. Tat		0070 (02/100)	70 11
L E180/BM005486	ab AE003559	CG8562 gene product	Drosophila	35% (21/59)	62% (37/59)	30-04
L F189a/BM005474	gb// 12000000	See chromosome 1 data	Drosoprina	0070 (21700)	0278 (07700)	00 04
L F203/BM005503	ab AE003048	CG18001 gene product	Drosophila	88% (62/70)	93% (66/70)	10-28
L E211/BM005514		Cytidine deaminase	Brugia malavi	50% (42/83)	70% (59/83)	10-17
L E223 BM005515	sp P50882	Bibosomal protein L9	Drosonhila	83% (81/97)	92% (90/97)	10-39
L 223 Di0000010	None	ribosoniai protein Es	Diosophila	65% (61797)	32 /8 (30/37)	16-00
L E248 RM005480	n 0/1/2/18	Ribosomal protein L5	Anonheles gambias	9/9/ (116/122)	Q1% (117/100)	60-52*
	sp.1044240	Ribosomal protein L3	Anopheles gamolde Drocophila	710/ (77/50)	34 /0 (117/123) QN% (17/59)	10 16
L 2001100011	sp. (F 5364) ab/ (E002520	Pibesomal protein C14	Drocophila	70% (31/32)	90 /0 (41/32) 96% (116/134)	50.62
LI 204 DIVI003403	gb/AE003039	Dibosomal protein S4	Apopholos gambias	13% (100/134) 02% (72/70)	00% (110/134)	10.25
LF275 BM005500	None	nibosomai protein 517	Anopheles gamblad	92% (13/19)	32% (10/13)	16-22

Table	2.	continued
	_	00,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Clone ID	Best match GENBANK ID	Gene description	Organism	%AA identity	%AA similarity	B∟as⊤X <i>E</i> -value
		p	- 5			
LF282 T58328	None		D / "		000((00)07)	4 40
LF291 BM005482	sp. 018640	Guanine nucleotide-binding protein B subunit	Drosophila	88% (86/97)	92% (90/97)	1e-49
LF334 BM005506	sp. Q28852	AIP synthase G chain, mitochondrial	Bovine	51% (49/96)	70% (68/96)	4e-23
LF335 BM005505	gb AF2498/1	Farnesoic acid o-methyltransferase	Panulirus interruptus	41% (46/112)	58% (66/112)	9e-20
LF338 BM005508	gb U84745	Cuticle protein Lcp65Ac	Drosophila	68% (40/58)	81% (48/58)	5e-19
LF342 BM005512	gb AF051780	Chymotrypsin 2	Anopheles darlingi	35% (53/148)	57% (86/148)	5e-20
LF357 BM005495	None					
LF407 BM005510	gb AE003550	CG11989 gene product	Drosophila	78% (22/28)	95% (27/28)	3e-06†
LF409 BM005511	None					
Chromosome III						
AEGI10 BI096854	None					
AEGI28 BI096849	None					
LF92 BM005493	pir S23988	Ribosomal protein CEP52	Drosophila	100% (91/91)	100% (91/91)	4e-49
LF96 BM005491	dbj AB007424	Opsin	Papilio xuthus	77% (91/117)	85% (101/117)	7e-46
LF99a BM005477		See chromosome 1				
LF103 BM005488	gb AE003796	Ribosomal protein L11	Drosophila	84% (67/79)	89% (71/79)	1e-31
LF106 BM005490	gb AE003690	Ribosomal protein S25	Drosophila	90% (60/66)	90% (60/66)	9e-28
LF108 T58322	sp. P39018	Ribosomal protein S19	Drosophila	72% (81/111)	84% (95/111)	5e-44
LF111 BM005492	sp. P41126	Ribosomal protein L13	Drosophila	75% (61/81)	88% (72/81)	5e-33
LF128 BM005494	gb AF218064	Malate dehydrogenase precursor	Nucella lapillus	65% (74/113)	74% (85/113)	3e-35
LF168 R47184	sp. P13008	Ribosomal protein S26	Drosophila	90% (74/82)	96% (79/82)	
LF188b BM005472		See chromosome 1				
LF218 BM005487	sp. P55828	Ribosomal protein S20	Drosophila	87% (93/106)	93% (100/106)	7e-48
LF227 T58323	gb Al003779	CG11522 gene product	Drosophila	50% (73/144)	60% (88/144)	5e-22*
LF232 BM005489	sp. P18077	Ribosomal protein L35a	Human	64% (29/45)	75% (34/45)	7e-11
LF253 T58331	sp. P04645	Ribosomal protein L30	Human	80% (62/74)	89% (67/74)	4e-29
LF261 BM378052	sp. P35035	Trypsin 1	Anopheles gambiae	57% (83/145)	69% (101/145)	1e-39*
LF296 BM005501	sp. P52813	Ribosomal protein S3a	Anopheles gambiae	86% (74/86)	91% (79/86)	1e-37
LF316 BM005516	sp. 095721	Synaptosomal associated protein 29, SNAP-29	Human	30% (25/82)	55% (46/82)	6e-13
LF323 BM005507	gb AF025791	20S proteasome beta2 subunit	Drosophila	73% (117/160)	83% (133/160)	6e-61
LF347 T58329	None					
LF352 T58330	gb AF400202	Ribosomal protein L39	Spodoptera frugiperda	93% (44/47)	97% (46/47)	2e-20
LF377 BM005496	None					
LF386 BM005497	sp. P08526	Ribosomal protein L27	Human	60% (75/124)	76% (95/124)	9e-36
LF396 BM005498	gb AE003471	CG9134 gene product	Drosophila	28% (14/49)	52% (26/49)	7e-08
LF417 BM005499	sp. Q94530	Ribosomal protein L27a	Drosophila	98% (56/57)	100% (57/57)	9e-25*
TY7 R19560	gb AF079459	Ras-like GTPase, Rab7	Drosophila	76% (55/92)	84% (61/72)	4e-25

*Filtered *E*-value but unfiltered percentage matches. †Best ungapped identities.

linked markers have not been compared directly within the same segregating population, and as such, some local misplacements are anticipated. Care was taken during the JOINMAP assembly to confirm that known linear orders were maintained. The data for most markers were completely informative, although for a small group (LF99b, LF101, LF150, LF179, LF231 and *AeW*) the data were only partially informative and their map positions are therefore likely to be tentative.

Most of the markers were derived from random cDNAs, although a fair number (45) were derived from known genes of diverse function (Tables 1 and 2). We were also able to successfully directly use four Drosophila melanogaster cDNA clones as probes to Ae. aegypti DNA, and subsequently, to map their position. These clones were included, as they hybridized to Southern blots of Ae. aegypti DNA under high stringency conditions, indicating that they recognized the Ae. aegypti orthologue of the D. melanogaster gene. A relatively small number (16) of the markers were derived from random genomic DNAs, including several cloned RAPD-PCR fragments (Table 3). The marker distribution across the three linkage groups reflects an average map distance of 70.6, 70.2 and 64.2 cM for LG I, II and III, respectively. It is of interest that the largest linkage group (LG I) is physically the smallest chromosome (McDonald & Rai, 1970; Brown et al., 2001).

Sequence data have been obtained and were submitted to the GENBANK EST database for all mapped random cDNA clones and to the GSS database for all mapped random genomic clones. Most of the cDNA clones had high BLASTX sequence identities to known genes; only 16 (19.8%) had no matches in the public databases (Tables 1 and 2). Not surprisingly, most best matches were to genes from *Drosophila melanogaster*, including three clones with relatively weak matches to gene products of unknown function. A small number of the clones had high sequence identities to previously described mosquito genes, including

Table 3.	Mapped	random	genomic	clones
----------	--------	--------	---------	--------

Clone ID	Chromosome	Accession no.
a6.2A4D5	II	BH614629
a12	111	BH214530
a14	III	BH214531
ARC2	I	BH214538
ARC3	I	BH214542
ARC4	Ш	BH214543
A6M580	I	BH214540
A13L975	Ш	BH214533
B8L260	I	BH214532
B8L720	Ш	BH214539
B8M980	Ш	BH214534
D6L500	I	BH214541
D6L600	Ш	BH214535
F15L410	II	BH214536
F17M590	Ш	BH214537
RT6	I	BH214544

both *Aedes* and *Anopheles* spp. This largely reflects the general lack of mosquito sequences in the public databases. Many of the random cDNA clones (n = 28) had a high sequence identity to various ribosomal proteins. The remainder are genes involved in a variety of general cell activities.

Our composite linkage map seems to provide a dense coverage of the euchromatic regions of the *Ae. aegypti* genome (Brown *et al.*, 2001). Apparently, few genes are located in the centromeric regions of each chromosome and little recombination occurs across them. Given the present density of genetic markers across all three chromosomes, it also seems likely that few, if any, genes are located on the distal portion of the *q*-arm of chromosome III. It is also of interest that all the genomic DNA sequences that we and others (Bosio *et al.*, 2000; Fulton *et al.*, 2001) have mapped are interspersed within the euchromatic regions of the genome.

Our results indicate that the *Scr* gene is located on the *q*-arm of chromosome I (Fig. 1), and is apparently separated from genes on the *p*-arm by an extensive heterochromatic region (Brown *et al.*, 2001). Because independent studies by Fulton *et al.* (2001) also placed the *AbdA* gene in the same general genome location, it seems likely that Hox gene members of the Antennapedia complex and Bithorax complex are clustered in this region. The available data is insufficient to determine whether the Hox gene cluster is tightly organized in a single cluster as was recently reported for the mosquito, *Anopheles gambiae*, or if they are split into two widely separated but linked groups, as in *D. melanogaster* (Devenport *et al.*, 2000; Powers *et al.*, 2000).

Success in the positional cloning of genes that influence complex phenotypes of interest in Ae. aegypti will depend heavily on our abilities to develop PCR-based genetic markers. That is, only a limited number of Southern blotbased RFLP markers can be evaluated for individual mosquitoes. The development of microsatellite markers has proven difficult for Ae. aegypti (Fagerberg et al., 2001), indicating that alternative marker systems must be developed. The successful use of SSCP analysis for the detection of SNPs demonstrates that these polymorphisms are abundant and useful for Ae. aegypti (Bosio et al., 2000; Fulton et al., 2001). Access to EST and STS sequence data for our RFLP markers will facilitate their development as SNP-based markers. Indeed, we have screened 32 cDNA sequences and determined that 24 (75%) contained at least one SNP within the regions compared in laboratory strain mosquitoes, and are successfully developing them as genetic markers (Meece et al., unpublished data). Because SNPs are highly abundant, and can be adapted for high-throughput analysis, it seems clear that they will become the genetic marker of choice for most organisms, including Ae. aegypti (Landegren et al., 1998; Brookes, 1999).

Experimental procedures

Sources of clones and linkage analysis

The clones reported in this study were obtained from a wide variety of sources, including a previously described random cDNA library (Severson et al., 1993), cDNAs for known genes from Ae. aegypti and D. melanogaster isolated in our laboratory or received as gifts from other investigators or via PCR from genomic DNA using GENBANK sequence data, genomic clones generated by targeted marker development (Severson et al., 1999), and random genomic clones serendipitously obtained in our laboratory. Map positions for some clones have been reported previously (Beerntsen et al., 1995; Grossman et al., 1997; Severson et al., 1993, 1994a, 1995a, 1997, 1999), but have not been collectively integrated. RFLP analysis on individual segregating populations from a variety of independent crosses was performed using our standard protocol (Severson, 1997). Twenty-one crosses provided two-point linkage estimates for markers on chromosomes I and III, while 31 crosses provided two-point linkage estimates for markers on chromosome II. The cDNA sequences for SSCP analysis were selected from Fulton et al. (2001) and the SSCP analysis followed Bosio et al. (2000). To identify informative SNP loci, a target sequence was amplified from genomic DNA from each parent of a segregating population, and subjected to direct cycle sequencing (see below). Thereafter, SNP analysis followed the McSNP protocol (Akey et al., 2001). McSNP products from individual segregants were visualized and scored used a gel-free system (Hybaid DASH System) that identifies alleles based on melting temperature calculations of the PCR products directly in 96-well microplates. A composite linkage map was assembled based on all our previously reported mapping efforts, as well as on unpublished data using the JOINMAP computer program (Stam, 1993). The JOINMAP output files containing all composite two-point recombination frequencies and associated standard errors are available by request (contact D.W. Severson). The linkage map was drawn using the DRAWMAP computer program (van Ooijen, 1994). Map distances are reported in Kosambi centiMorgans.

Sequence analysis and database comparisons

Recombinant plasmids were purified using the alkaline lysis technique (Sambrook *et al.*, 1989) and subjected to cycle sequencing using the ABI Prism Big Dye Terminator kit (PE Applied Biosystems), using sequencing primers specific to the plasmid vectors. Clones from orientated libraries were sequenced from the 5' ends, although for some clones the sequence data for 3' ends also was obtained. DNA sequences were submitted to the BLASTX program (Altschul *et al.*, 1997) for homology searches with the non-redundant sequence database using the default BLOSUM62 matrix and other default settings. Selected sequences were re-analysed using the gapped or the unfiltered settings. Data for the expressed sequences have been submitted to the GENBANK EST database, and data for the random genomic sequences have been submitted to the GENBANK GSS database.

Acknowledgements

This work was supported by grants Al33127, Al34337 and Al45123 from the National Institutes of Health. We thank Jenny Walerak, Sara Cywinski, Jill Williams and Kristen

Jones for technical assistance, and William Black for assistance with the SSCP analysis.

References

- Adams, M.D., Celniker, S.E., Holt, R.A., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195.
- Akey, J.M., Sosnoski, D., Parra, E., Dios, S., Hiester, K., Su, B., Bonilla, C., Jin, L. and Shriver, M.D. (2001) A melting curve analysis of SNPs (McSNP): a gel-free and inexpensive approach for SNP genotyping. *Biotechniques* **30**: 358–367.
- Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucl Acids Res* 25: 3389–3402.
- Anderson, J.R., Grimstad, P.R. and Severson, D.W. (2001) Chromosomal evolution among six mosquito species (Diptera: Culicidae) based on shared restriction fragment length polymorphisms. *Mol Phylogenet Evol* 20: 316–321.
- Beerntsen, B.T., Severson, D.W., Klinkhammer, J.A., Kassner, V.A. and Christensen, B.M. (1995) *Aedes aegypti*: a quantitative trait locus (QTL) influencing filarial worm intensity is linked to QTL for susceptibility to other mosquito-borne pathogens. *Exp Parasitol* 81: 355–362.
- Bosio, C.F., Fulton, R.E., Salasek, M.L., Beaty, B.J. and Black, W.C.I.V. (2000) Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito *Aedes aegypti. Genetics* **156**: 687–698.
- Brookes, A.J. (1999) The essense of SNPs. Gene 234: 177-186.
- Brown, S.E., Knudson, D.L. and Severson, D.W. (2002) Culicine genomics. *Insect Biochem Mol Biol*, in press.
- Brown, S.E., Severson, D.W., Smith, L.A. and Knudson, D.L. (2001) Integration of the *Aedes aegypti* genetic linkage and physical maps. *Genetics* **157**: 1299–1305.
- Devenport, M.P., Blass, C. and Eggleston, P. (2000) Characterization of the Hox gene cluster in the malaria vector mosquito, *Anopheles gambiae. Evol Dev* **2**: 326–339.
- Fagerberg, A.J., Fulton, R.E. and Black, W.C.I.V. (2001) Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, *Ixodes scapularis* and the yellow fever mosquito, *Aedes aegypti. Insect Mol Biol* **10**: 225–236.
- Ferdig, M.T., Taft, A.S., Severson, D.W. and Christensen, B.M. (1998) Development of a comparative genetic linkage map for *Armigeres subalbatus* using *Aedes aegypti* RFLP markers. *Genome Res* **8**: 41–47.
- Fulton, R.E., Salasek, M.L., DuTeau, N.M. and Black, W.C.I.V. (2001) SSCP analysis of cDNA markers provides a dense linkage map of the *Aedes aegypti* genome. *Genetics* **158**: 715–726.
- Grossman, G.L., Campos, Y., Severson, D.W. and James, A.A. (1997) Evidence for two distinct members of the amylase gene family in the yellow fever mosquito, *Aedes aegypti. Insect Mol Biol Biochem* **27**: 769–781.
- Landegren, A., Nilsson, M. and Kwok, P.-Y. (1998) Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. *Genome Res* **8**: 769–776.
- McDonald, P.T. and Rai, K.S. (1970) Correlation of linkage groups with chromosomes in the mosquito, *Aedes aegypti. Genetics* 66: 475–485.
- Mori, A., Severson, D.W. and Christensen, B.M. (1999) Comparative linkage maps for the mosquitoes, *Culex pipiens* and *Aedes aegypti*, based on common RFLP loci. J Hered **90**: 160–164.

- Mori, A., Tomita, T., Hidoh, O., Kono, Y. and Severson, D.W. (2001) Comparative map development and identification of an autosomal locus for insensitive acetylcholinesterase-mediated insecticide resistance in *Culex tritaeniorhynchus*. *Insect Mol Biol* **10**: 197–203.
- Munstermann, L.E. and Craig, G.B. Jr (1979) Genetics of *Aedes aegypti*: updating the linkage map. *J Hered* **70**: 291–296.
- Powers, T.P., Hogan, J., Ke, Z., Dymbrowski, K., Wang, X., Collins, F.H. and Kaufman, T.C. (2000) Characterization of the Hox cluster from the mosquito *Anopheles gambiae* (Diptera: culicidae). *Evol Dev* 2: 311–325.
- Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) *Molecular Cloning: a Laboratory Manual*, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor, NY.
- Severson, D.W. (1997) RFLP analysis of insect genomes. In *The Molecular Biology of Insect Disease Vectors: a Methods Manual* (Crampton, J.M., Beard, C.B. and Louis, C., eds), pp. 309–320. Chapman & Hall, London.
- Severson, D.W., Anthony, N.M., Andreev, O. and ffrench-Constant, R.H. (1997) Molecular mapping of insecticide resistance genes in the yellow fever mosquito *Aedes aegypti*. *J Hered* 88: 520–524.
- Severson, D.W., Mori, A., Kassner, V.A. and Christensen, B.M. (1995b) Comparative linkage maps for the mosquitoes, *Aedes albopictus* and *Aedes aegypti*, based on common RFLP loci. *Insect Mol Biol* **4**:41–45.

- Severson, D.W., Mori, A., Zhang, Y. and Christensen, B.M. (1993) Linkage map for *Aedes aegypti* using restriction fragment length polymorphisms. *J Hered* 84: 241–247.
- Severson, D.W., Mori, A., Zhang, Y. and Christensen, B.M. (1994a) Chromosomal mapping of two loci affecting filarial worm susceptibility in *Aedes aegypti. Insect Mol Biol* **3**:67–73.
- Severson, D.W., Mori, A., Zhang, Y. and Christensen, B.M. (1994b) The suitability of RFLP markers for evaluating genetic diversity among and synteny between mosquito species. *Am J Trop Med Hyg* **50**: 425–432.
- Severson, D.W., Thathy, V., Mori, A., Zhang, Y. and Christensen, B.M. (1995a) Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti. Genetics 139: 1711–1717.
- Severson, D.W., Zaitlin, D. and Kassner, V.A. (1999) Targeted identification of markers linked to malaria and filarioid nematode parasite resistance genes in the mosquito *Aedes aegypti. Genet Res* **73**: 217–224.
- Severson, D.W. and Zhang, Y. (1996) Generation of expressed sequence tags and sequence-tagged sites as physical landmarks in the mosquito, *Aedes aegypti*, genome. *Genome* **39**: 224–229.
- Stam, P. (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. *Plant J* 3: 739–744.
- van Ooijen, J.W. (1994) DrawMap: a computer program for drawing genetic linkage maps. *J Hered* **85**: 66.