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Abstract

Let G be a graph G whose largest independent set has size m. A permutation

⇡ of {1, . . . ,m} is an independent set permutation of G if

a⇡(1)(G)  a⇡(2)(G)  · · ·  a⇡(m)(G)

where ak(G) is the number of independent sets of size k in G. In 1987 Alavi,

Malde, Schwenk and Erdős proved that every permutation of {1, . . . ,m} is an

independent set permutation of some graph with ↵(G) = m, i.e. with largest

independent set having size m. They raised the question of determining, for each

m, the smallest number f(m) such that every permutation of {1, . . . ,m} is an

independent set permutation of some graph with ↵(G) = m and with at most f(m)

vertices, and they gave an upper bound on f(m) of roughly m
2m

. Here we settle

the question, determining f(m) = m
m
, and make progress on a related question,

that of determining the smallest order such that every permutation of {1, . . . ,m}
is the unique independent set permutation of some graph of at most that order.

More generally we consider an extension of independent set permutations to weak

orders, and extend Alavi et al.’s main result to show that every weak order on

{1, . . . ,m} can be realized by the independent set sequence of some graph with

↵(G) = m and with at most m
m+2

vertices.

Alavi et al. also considered matching permutations, defined analogously to

independent set permutations. They observed that not every permutation of

{1, . . . ,m} is a matching permutation of some graph with largest matching having

size m, putting an upper bound of 2
m�1

on the number of matching permutations

of {1, . . . ,m}. Confirming their speculation that this upper bound is not tight,

we improve it to O(2
m
/
p
m).
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1 Introduction

To a real sequence a1, a2, . . . , am we can associate a permutation ⇡ of [m] := {1, . . . ,m},
which gives information about the shape of the histogram of the sequence, via

a⇡(1)  a⇡(2)  · · ·  a⇡(m). (1)

If there are some repetitions among the ai then ⇡ is not unique. For example, the
sequence (5, 10, 10, 5, 1) has associated with it each of the sequences 51423, 54123, 51432
and 54132. (Here and elsewhere we present permutations in one-line notation, so for
example 51423 represents the permutation ⇡ with ⇡(1) = 5, ⇡(2) = 1, et cetera.)

This association was introduced by Alavi, Malde, Schwenk and Erdős in [1], where
they proposed using it to investigate sequences associated with graphs. For example, let
G be a (simple, finite) graph with ↵(G) = m, that is, whose largest independent set
(set of mutually non-adjacent vertices) has size m. The independent set sequence of G is
the sequence (ik(G))mk=1 where ik(G) is the number of independent sets of size k in G.
Say that ⇡ is an independent set permutation of G if ⇡ is one of the permutations that
can be associated to the independent set sequence of G via (1). (We do not consider
i0(G), as it equals 1 for every G.)

The main theorem of [1] is that all m! permutations of [m] are independent set
permutations.

Theorem 1.1. [1] Given m � 1 and a permutation ⇡ of [m], there is a graph G with

↵(G) = m and with

i⇡(1)(G) < i⇡(2)(G) < · · · < i⇡(m)(G). (2)

In the language of [1] the independent set sequence of a graph is unconstrained — it
can exhibit arbitrary patterns of rises and falls.

For a permutation ⇡ denote by g(⇡) the minimum order (number of vertices) over
all graphs G for which ⇡ is an independent set permutation of G, and for each m denote
by f(m) the maximum, over all permutations ⇡ of [m], of g(⇡). Alavi et al. showed that
f(m) is at most roughly m

2m+1 (they did not calculate their upper bound explicitly).
They speculated that f(m) � m

m, and proposed the question of determining f(m).

Problem 1.2. [1, Problem 1] Determine the smallest order large enough to realize every
permutation of order m as the sorted indices of the vertex independent set sequence of
some graph.

Our first result settles this question exactly.

Theorem 1.3. (Part 1, f(m)  m
m
) For each m � 1 there is a graph Gm on m

m

vertices with ↵(G) = m and with

i1(Gm) = i2(Gm) = · · · = im(Gm) = m
m
. (3)

(Part 2, f(m) � m
m
) On the other hand, if ↵(G) = m and im(G) < m

m
then im(G) <

im�1(G).
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Note that Part 1 of Theorem 1.3 immediately implies that f(m) � m
m, since for

every permutation ⇡ of [m], ⇡ is an independent set permutation of Gm. To see that
Part 2 implies f(m) � m

m, consider any permutation of the form

· · · (m� 1) · · ·m · · · 1 · · · .

Since m appears later in the permutation than m� 1, for this to be an independent set
permutation of some graph G requires im(G) � im�1(G), and so, by (the contrapositive
of) Part 2, im(G) � m

m. But then since 1 appears later in the permutation than m,
this further requires i1(G) � m

m, so G must have at least mm vertices.
Our proof that f(m) � m

m follows almost immediately from a result of Fisher and
Ryan [8] on the monotonicity of a sequence related to the independent set sequence.
Our construction of Gm, to establish f(m)  m

m, follows the same general scheme
introduced in [1]. There, it is shown how to construct a graph G with ↵(G) = m, with
ik(G) being a sum. The first term of the sum is ⇡�1(k)T (for some arbitrary constant
T ), and for T su�ciently large the sum of the remaining terms can be bounded above
by T . This puts ik(G) in the interval [⇡�1(k)T, (⇡�1(k) + 1)T ), and so ⇡ is a (actually,
the unique) independent set permutation of G. (We describe this construction in more
detail in Section 2). We obtain f(m)  m

m by carefully carrying out the construction
in a way that allows perfect control over the lower order terms in the sum.

It is worth noting here a di↵erence between (1) (which allows di↵erent terms of the
sequence to have the same value) and (2) (which does not). It is quite natural to ask
what happens in Problem 1.2 when we require that the permutations associated with
independent set sequences be unique.

Problem 1.4. Determine, for each m � 1, the smallest M such that for every permuta-
tion ⇡ of [m] there is a graph G of order at most M with ↵(G) = m and with

i⇡(1) < i⇡(2) < · · · < i⇡(m).

In [1] the comment is made that Problem 1.2 “is likely to remain exceeding di�cult”.
Given the surrounding discussion in [1], it seems likely that the authors were implicitly
thinking about Problem 1.4 when they made this comment. While we do not have an
exact answer to Problem 1.4, we are able to extend the approach used in Theorem 1.3
to obtain bounds for M in Problem 1.4 that are significantly better than those implicit
in [1] (see Theorem 1.5 below).

To a real sequence a1, a2, . . . , am we can associate a unique weak order (an ordered
partition (B1, . . . , B`) of [m] into non-empty blocks) via Bi = {bi1, bi2, . . .}, where

ab11 = ab12 = · · · < ab21 = ab22 = · · · < · · · < ab`1 = ab`2 = · · · .

For example the sequence (4, 6, 4, 1) (the independent set sequence of the edgeless graph
on four vertices) induces the weak order B1 = {4}, B2 = {1, 3}, B3 = {2}. Theorem 1.1
says that every weak order in which all blocks are singletons is the weak order induced
by some graph, while Part 1 of Theorem 1.3 says the same for the weak order with a
single block.
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Theorem 1.5. For m � 1, for every weak order w on [m] there is a graph G with

↵(G) = m, and with fewer than m
m+2

vertices, which induces w.

So although there are many more weak orders on [m] than there are permutations —
(1/2)m!(log2 e)

m+1 (see e.g. [3]) as opposed to m! — it does not take too many more
vertices to induce them all. Note also that by Theorem 1.3, any weak order on [m] that
has m� 1 and m in the same block, and 1 in a block with a higher index, cannot be
induced by a graph with m

m or fewer vertices. The analog of Problem 1.2 for weak
orders — where in the range (mm

,m
m+2) is the smallest order su�cient to realize every

weak order on [m]? — remains open.

Alavi et al. also considered the edge independent set sequence or matching sequence

of a graph. Let Mn denote the set of graphs with ⌫(G) = n, that is, whose largest
matching (set of edges no two sharing a vertex) has n edges. The matching sequence
of G 2 Mn is (mk(G))nk=1 where mk(G) is the number of matchings in G with k edges.
Say that ⇡ is a matching permutation of G if ⇡ is one of the permutations that can be
associated to the matching sequence of G via (1). (Note that throughout our discussion
of matchings, we will only consider simple graphs.)

In contrast to independent set permutations, there are permutations that are not the
matching permutation of any graph. Indeed, Schwenk [19] showed that the matching
sequence of any graph G 2 Mn is unimodal in the strong sense that for some k,

m1(G) < m2(G) < · · · < mk(G) � mk+1(G) > mk+2(G) > · · · > mn(G).

It follows that the permutations of [n] that can be the matching permutations of a graph
in Mn must have

⇡
�1(1) < ⇡

�1(2) < · · · < ⇡
�1(k � 1)

and
⇡
�1(n) < ⇡

�1(n� 1) < · · · < ⇡
�1(k + 1),

(4)

where k = ⇡(n). (This restriction on ⇡ can also be deduced from the real-rootedness of
the matching polynomial, first established by Heilmann and Lieb [13].) Following Alavi
et al., we refer to permutations satisfying (4) as unimodal permutations.

There are
Pn�1

k=0

�
n�1
k

�
= 2n�1 unimodal permutations of [n]. To see this, note that

to construct a unimodal permutation we first select k = ⇡(n), which must appear as the
last entry of the permutation in one-line notation, and then select the k � 1 locations
(from among the first n� 1) where 1, . . . , k � 1 appear; this completely determines the
permutation since, as observed in (4) above, the entries 1 through k must appear in ⇡ in
ascending order, while the entries k + 1 through n must appear in descending order. So,
writing Mn for the set of permutations ⇡ that are the matching permutations of some
graph in Mn, we have Mn  2n�1. This bound was observed in [1], where the following
problem was posed.

Problem 1.6. [1, Problem 2] Characterize the permutations realized by the edge
independence sequence. In particular, can all 2n�1 unimodal permutations of [n] be
realized?
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We do not address the characterization problem, but our next result answers the
particular question: a vanishing proportion of unimodal permutations are the matching
permutations of some graph.

Theorem 1.7. We have Mn = o(2n). More precisely, there is a constant c such that

for n � 1

Mn  c2np
n
. (5)

In the other direction, the perfect matching with n edges gives a lower bound on
Mn of 2b(n�1)/2c. Indeed, the matching sequence of the perfect matching with n edges
is
��

n
k

��n
k=1

, which has b(n � 1)/2c pairs of equal terms (
�
n
1

�
=
�

n
n�1

�
,
�
n
2

�
=
�

n
n�2

�
, et

cetera), leading to 2b(n�1)/2c associated permutations of [n]. We can improve this by an
additive term of ⌦(n), but we do not give the details here.

We give the proofs of our results concerning independent set permutations and weak
orders in Section 2, and address matching permutations in Section 3. We end with some
questions and comments in Section 4.

2 Independent set permutations

We begin with the proof of Part 2 of Theorem 1.3, f(m) � m
m. This turns out to come

almost immediately from a theorem of Fisher and Ryan [8], a result which they remark
“brings order into [the] chaos” of the independent set sequence observed by Alavi et al..

Theorem 2.1. For any graph G with ↵(G) = m, we have

 
i1(G)�

m
1

�
! 1

1

�
 
i2(G)�

m
2

�
! 1

2

� · · · �
 
im�1(G)�

m
m�1

�
! 1

m�1

�
 
im(G)�

m
m

�
! 1

m

.

The last inequality above (which is all we need) says that mm
im(G)m�1  im�1(G)m.

If also im(G) < m
m then this implies that im(G)m < im�1(G)m, or im(G) < im�1(G), as

claimed.

Remark 2.2. In an earlier version of this paper [2] we obtained Part 2 of Theorem 1.3 by
combining results of Frankl, Füredi and Kalai [9] and Frohmader [10] on Kruskal-Katona
type theorems for colored (or balanced) flag complexes. Invoking Theorem 2.1 (whose
short proof does not require consideration of flag complexes) leads to a considerably
more direct proof.

We now move on to the proof of Part 1 of Theorem 1.3, f(m)  m
m. We begin

with an outline of the construction, which is very similar to one described in [1]. Recall
that our goal is to construct a graph Gm with ↵(G) = m that has mm independent sets
of size k for each k 2 [m]. A key idea that we use throughout is the e↵ect of the join
operation on independent set sequences. For a collection {Gj : j 2 J} of graphs, denote
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by �j2JGj the graph consisting of a union of disjoint copies of the Gj , with every vertex
in each Gj adjacent to every vertex in Gj0 for each j

0 6= j — the mutual join of the Gj.
The e↵ect of � on independent set sequences is additive: if G = �j2JGj then for k � 1,

ik(G) =
X

j2J

ik(Gj), (6)

because no independent set in G can have vertices in two di↵erent Gj ’s. We will use (6)
repeatedly in the sequel, usually without comment.

Given a permutation ⇡ of [m], to construct a graph G satisfying (2) (i.e., i⇡(1)(G) <
· · · < i⇡(m)(G)) Alavi et al. [1] consider a graph of the form

G⇡ := �m
k=1kKnk

,

where nk = (⇡�1(k)T )1/k for some large integer T , and where kKnk
denotes k vertex

disjoint copies of the complete graph Knk
on nk vertices. By (6) we have

ik(G⇡) = ⇡
�1(k)T +

mX

j=k+1

✓
j

k

◆
(⇡�1(j)T )

k
j . (7)

Here the term ⇡
�1(k)T is the count of independent sets of size k in kKnk

, and for j > k

the summand
�
j
k

�
(⇡�1(j)T )

k
j counts independent sets of size k in jKnj ; there are no

independent sets of size k in any jKnj for j < k. For k < m we have

mX

j=k+1

✓
j

k

◆
(⇡�1(j)T )

k
j  T

k
k+1

mX

j=k+1

✓
j

k

◆
⇡
�1(j)

k
j  T

m
m+1

⇣
m2mm

m
m+1

⌘
.

For large enough T = T (m) the last expression above is strictly smaller than T , so that
from (7) we get ⇡�1(k)T  ik(G⇡) < (⇡�1(k) + 1)T . This inequality also holds when
k = m (in which case the summation in (7) is empty). From all this (2) follows.

To more carefully control the sum in (7), and allow us to construct a graph Gm with
m

m independent sets of all sizes from 1 to m, we modify this construction. Before doing
so, we give some intuition.

The graph G0 := mKm has ↵(G0) = m, im(G0) = im�1(G0) = m
m, and ik(G0) =�

m
k

�
m

k
< m

m for k < m� 1. We need to increase the count of independent sets of size
m� 2 by

m
m �

✓
m

2

◆
m

m�2 = m
m�2

✓
m

2 �
✓
m

2

◆◆
:= a

(m)
2 m

m�2
,

without changing the number of independent sets of sizes m or m � 1. By (6), the

graph G2 := �a
(m)
2

i=1 (m � 2)Km (the mutual join of a
(m)
2 copies of (m � 2)Km) has

im�2(G2) = a
(m)
2 m

m�2, and also has im(G2) = im�1(G2) = 0. Hence, again by (6),
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↵(G0�G2) = m, im(G0�G2) = im�1(G0�G2) = im�2(G0�G2) = m
m, and im�3(G0�

G2) =
�
m
3

�
m

m�3 + a
(m)
2 (m� 2)mm�3. We need to add

m
m�3

✓
m

3 �
✓
m

3

◆
� a

(m)
2 (m� 2)

◆
:= a

(m)
3 m

m�3

independent sets of size m� 3 (without adding any independent sets of sizes m,m� 1
or m� 2). We achieve this by setting

G3 := �a
(m)
3

i=1 (m� 3)Km

and considering G0�G2�G3. (Note that a
(m)
3 � 0, being a cubic in m with non-negative

coe�cients.)
We continue in this manner until we reach a graph which satisfies (3), which we

declare to be Gm. We have to check that at no point, while fixing the number of
independent sets of size k to be m

m, do we cause the number of independent sets of
size j to be greater than m

m, for some 1  j < k. This check is the main point of the
formal proof of Theorem 1.3, Part 1.

Proof. (Theorem 1.3, Part 1) For m � 1, define a sequence (a(m)
0 , a

(m)
1 , . . . , a

(m)
m�1) via

m
k = a

(m)
0

✓
m

k

◆
+ a

(m)
1

✓
m� 1

k � 1

◆
+ · · ·+ a

(m)
k�1

✓
m� (k � 1)

1

◆
+ a

(m)
k

✓
m� k

0

◆
(8)

for k = 0, . . . ,m� 1. Note that the m relations in (8) do indeed uniquely determine the

a
(m)
k : first taking k = 0 forces a(m)

0 = 1; then taking k = 1 further forces a(m)
1 = 0; then

taking k = 2 forces a(m)
2 = m

2 �
�
m
2

�
, and so on. The motivation behind this definition

as follows: we will go through an iterative procedure (the one described above) to set
the number of independent sets of each size to be m

m, starting with independent sets
of size m, and working down. When we come to fix the number of independent sets of
size m � k to be m

m, it will turn out that we need to add a
(m)
k m

m�k such, which we

will achieve by successively joining a
(m)
k copies of (m� k)Km to what has thus far been

constructed. Evidently each a
(m)
i is an integer; but in fact a(m)

i � 0, as we now show.
For m = 1 the sequence consists of the single term a

1
0 = 1, and for m = 2 the

sequence is (1, 0). So consider m � 3. We will show, for each such m, that a(m)
k � 0 for

all 0  k  m� 1. We evidently have a
(m)
0 = 1. Now consider a k with 1  k  m� 1.

Starting by multiplying both sides of the k � 1 instance of (8) by m, and with the rest
of the steps justified below, we have

m
k = a

(m)
0 m

✓
m

k � 1

◆
+ a

(m)
1 m

✓
m� 1

k � 2

◆
+ · · ·+ a

(m)
k�1m

✓
m� (k � 1)

0

◆

� a
(m)
0

✓
m

k

◆
+ a

(m)
1

✓
m� 1

k � 1

◆
+ · · ·+ a

(m)
k�1

✓
m� (k � 1)

1

◆

= m
k � a

(m)
k ,
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so a
(m)
k � 0. The first inequality uses

m

✓
m� j

k � 1� j

◆
�
✓
m� j

k � j

◆
,

valid for m � 3, k 2 {1, . . . ,m� 1} and j 2 {0, . . . , k� 1}, and the second equality uses
(8).

Now consider the graph Gm = �m�1
k=0 Gk where Gk = �a

(m)
k

j=1 (m � k)Km. We have
↵(Gm) = m and, for each k 2 {0 . . . ,m� 1}

im�k(Gm) = a
(m)
0

✓
m

k

◆
m

m�k + a
(m)
1

✓
m� 1

k � 1

◆
m

m�k + · · ·+ a
(m)
k

✓
m� k

0

◆
m

m�k

= m
m�k

✓
a
(m)
0

✓
m

k

◆
+ a

(m)
1

✓
m� 1

k � 1

◆
+ · · ·+ a

(m)
k

✓
m� k

0

◆◆

= m
m
,

the last equality by (8). The main points of the calculation above are that the only
parts of Gm that contribute to im�k(Gm) are those of the form aKm for a � m� k, and
that

im�k(aKm) =

✓
a

m� k

◆
m

m�k =

✓
m� (m� a)

k � (m� a)

◆
m

m�k
.

We now turn to the proof of Theorem 1.5, concerning weak orders. The case m = 1
is trivial, and m = 2 is easy: the three weak orders on [2] are achieved by 2K1, 2K2 and
K3 [K2. So from here on we assume m � 3.

We will construct

• a graph H1 with m
m +m

m�1 vertices, with m
m independent sets of each size in

{2, . . . ,m}, mm +m
m�1 independent sets of size 1, and with ↵(H1) = m;

• a graph Hm with 2mm �m
m�1 vertices, with 2mm �m

m�1 independent sets of
each size in {1, . . . ,m�1}, 2mm independent sets of size m, and with ↵(Hm) = m;

• and for each k 2 {2, . . . ,m�1}, a graphHk withm
m vertices, withm

m independent
sets of each size in {1, . . . ,m} \ {k}, with m

m +m
m�1 independent sets of size k,

and with ↵(Hm) = m.

The main point here is that for each k there is a value s(k) such that Hk has s(k)
independent sets of all sizes except k, and has s(k) +m

m�1 independent sets of size k

(specifically s(k) = m
m for k 6= m and s(m) = 2mm �m

m�1).
Let w = (B1, . . . , B`) be a weak order on [m]. Construct a graph H(w) as follows:

H(w) is the mutual join of
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• one copy of Gm for each k 2 B1 (here and later, Gm is the graph from Theorem
1.3, Part 1; recall that it is a graph on m

m vertices, with largest independent set
having size m, and with m

m independent sets of size k for each k = 1, . . . ,m);

• one copy of Hk for each k 2 B2;

• and in general j � 1 copies of Hk for each k 2 Bj.

For t 2 Bj, for any 1  j  `, we have

it(H(w)) =

 
m

m|B1|+
X

k2B2

s(k) + 2
X

k2B3

s(k) + · · ·+
X

k2B`

(`� 1)s(k)

!
+ (j � 1)mm�1

.

(9)
Indeed, H(w) has mm independent sets of size t, coming from each of the |B1| copies of
Gm in the construction; for each k 2 B2 it has a further s(k) + 1{t=k}m

m�1 independent
sets of size t, coming from the Hk; and in general, for each k 2 Bj (1  j  `) it has a
further (j � 1)

�
s(k) + 1{t=k}m

m�1
�
independent sets of size t, coming from the j � 1

copies of Hk. Summing all these up, and noting that 1{t=k} will take the value 1 at most
once (for that j for which t 2 Bj, if j > 1), we obtain (9).

Note that the term in parentheses in (9) depends only on the weak order w, and in
particular is independent of t; let this term be denoted by c(w). We have that H(w) has

• c(w) independent sets of size t for each t 2 B1;

• c(w) +m
m�1 independent sets of size t for each t 2 B2;

• and in general, c(w) + (j � 1)mm�1 independent sets of size t for each t 2 Bj , for
1  j  `,

and so the weak order induced by H(w) is indeed w.
Among the Hk none has more than 2mm �m

m�1 vertices, so the order of H(w) is
at most

m
m|B1|+ (|B2|+ 2|B3|+ · · ·+ (`� 1)|B`|)(2mm �m

m�1). (10)

If any of the Bi’s has size at least 2, then the quantity in (10) can be increased by
replacing |Bi| with |Bi|� 1 and |Bi+1| with |Bi+1|+1 (creating a new, (`+1)st, block if
i = `). It follows that subject to the constraints

P
i |Bi| = m and |Bi| � 1, the quantity

in (10) is maximized by

m
m + (1 + 2 + . . .+ (m� 1))(2mm +m

m�1) < m
m+2

.

This gives Theorem 1.5; so our goal (which occupies the rest of the section) is to construct
Hk, for k 2 {1, . . . ,m}.

In the proof of Theorem 1.3, we required a
(m)
k � 0. To construct Hk, we need a

better bound.

9



Lemma 2.3. For k � 2 (and m � 3), a(m)
k � m

k�1
.

Proof. We will use an explicit expression for the a
(m)
k . It will be convenient in what

follows to extend the sequence (a(m)
0 , . . . , a

(m)
m�1) to (a(m)

0 , . . . , a
(m)
m ), by using (8) to also

define a
(m)
m .

Let ~a(m) be the column vector with a
(m)
j in the jth position (with the positions

indexed from 0 to m), and ~m the column vector with m
j in the jth position; so

~a
(m) =

h
a
(m)
0 a

(m)
1 · · · a

(m)
m

iT
and ~m = [1 m · · · m

m]T .

From (8) we have M~a
(m) = ~m where M is the (m+ 1) by (m+ 1) matrix with

�
m�j
i�j

�
in

the (i, j) position (rows and columns indexed from 0). Here we understand
�
n
c

�
to be 0

for negative c. Since M is lower triangular with 1’s down the diagonal it is invertible,
and it is well known that M�1 is the matrix with (�1)i�j

�
m�j
i�j

�
in the (i, j) position

(see for example [6]). To illustrate this fact, and the structure of M and M
�1, consider

M
�1 in the case m = 4:
2

6666664

�
4
0

�
0 0 0 0�

4
1

� �
3
0

�
0 0 0�

4
2

� �
3
1

� �
2
0

�
0 0�

4
3

� �
3
2

� �
2
1

� �
1
0

�
0�

4
4

� �
3
3

� �
2
2

� �
1
1

� �
0
0

�

3

7777775

�1

=

2

66664

1 0 0 0 0
4 1 0 0 0
6 3 1 0 0
4 3 2 1 0
1 1 1 1 1

3

77775

�1

=

2

66664

1 0 0 0 0
�4 1 0 0 0
6 �3 1 0 0
�4 3 �2 1 0
1 �1 1 �1 1

3

77775
.

For completeness, we provide a proof that M�1 is as claimed. Consider the matrix MM ,
where M has (�1)i�j

�
m�j
i�j

�
in the (i, j) position. The (k, `) entry of MM is clearly 0

for k < `, and 1 for k = `. For ` < k the (k, `) entry is

kX

t=`

(�1)t�`

✓
m� t

k � t

◆✓
m� `

t� `

◆
= (�1)`�k

kX

t=`

(�1)k�t (m� t)!

(k � t)!(m� k)!

(m� `)!

(t� `)!(m� t)!

= (�1)`�k

✓
m� `

m� k

◆ kX

t=`

(�1)k�t (k � `)!

(k � t)!(t� `)!

= (�1)`�k

✓
m� `

m� k

◆ kX

t=`

(�1)k�t

✓
k � `

k � t

◆

= 0,

the last equality following from the standard fact that the alternating sum of binomial
coe�cients is 0. This shows that MM is the identity, and so the inverse of M is as
claimed.

Since ~a(m) = M
�1

~m we have

a
(m)
k = m

k �m
k�1

✓
m� (k � 1)

1

◆
+m

k�2

✓
m� (k � 2)

2

◆
� · · ·+ (�1)k

✓
m

k

◆
. (11)

10



For m � 3 and k � 2, it is easily checked that the sequence

m
k
, m

k�1

✓
m� (k � 1)

1

◆
, m

k�2

✓
m� (k � 2)

2

◆
, . . . ,

✓
m

k

◆

is strictly decreasing. Lower bounding a
(m)
k by the sum of the first two terms of the

decreasing alternating sum on the right-hand side of (11) we get

a
(m)
k > m

k �m
k�1

✓
m� (k � 1)

1

◆
= (k � 1)mk�1 � m

k�1
,

as claimed.

Another tool we will need in the construction of the Hk is the following easy
observation.

Lemma 2.4. If `  n (with `, n natural numbers), then the sequence

n
`
,

✓
`

1

◆
n
`�1

,

✓
`

2

◆
n
`�2

, . . . ,

✓
`

`� 1

◆
n, 1

is non-increasing. In fact it is strictly decreasing, except that when ` = n the first two

terms are equal.

Lemma 2.4 gives an alternate justification that the procedure described in the
proof of Theorem 1.3 (the construction of Gm) is valid, which we now briefly describe,
as it is relevant to the construction of the Hk. Recall that Gm = �m�1

k=0 Gk where

Gk = �a
(m)
k

j=1 (m � k)Km (the mutual join of a(m)
k copies of (m � k)Km), where a

(m)
k

is as given by (8). The sequence (im(G0), im�1(G0), . . . , i1(G)) (which we will denote

compactly by (ik(G0))1k=m) is (
�

m
m�k

�
m

k)1k=m (recall a(m)
0 = 1). This starts (mm

, . . .), is
decreasing (by Lemma 2.4, with (n, `) = (m,m)), and its successive terms are integer
multiples of mm

,m
m�1

,m
m�2

, . . ..
Now consider the sequence (mm� ik(G0))1k=m�1, which represents the shortfall of the

sequence (ik(G0))1k=m from the goal sequence (mm)1k=m (in the shortfall, we have omitted
the leading 0, corresponding to k = m). This sequence is increasing, and its successive
terms are integer multiples of mm�1

,m
m�2

, . . .. Its first term is mm �
�
m
1

�
m

m�1, which

by Lemma 2.4 is a non-negative multiple of mm�1 (and in fact by (8) is a(m)
1 m

m�1). So,

to G0 we join the graph G1, the mutual join of a(m)
1 copies of (m� 1)Km. (It happens

that a
(m)
1 = 0, but for the purposes of this discussion, all that matters is that it is

non-negative).

The sequence (ik(G1))1k=m�1 is (a(m)
1

�
m�1

(m�1)�k

�
m

k)1k=m�1. By Lemma 2.4, with

(n, `) = (m,m� 1), this is decreasing, and its successive terms are integer multiples of
m

m�1
,m

m�2
, . . .. It follows that the sequence (mm � ik(G0 �G1))1k=m�2 — representing

the shortfall of the sequence (ik(G0 �G1))1k=m from the goal sequence (mm)1k=m (in the

11



shortfall, we have now omitted the two leading 0’s, corresponding to k = m and m� 1)
— is increasing, and its successive terms are integer multiples of mm�2

,m
m�3

, . . .. Its
first term is mm �

�
m
2

�
m

m�2 � a
(m)
1

�
m�1
1

�
m

m�2, which by Lemma 2.4 is a non-negative

multiple of mm�2 (and in fact by (8) is a(m)
2 m

m�2).

So, to G0 �G1 we join the graph G2, the mutual join of a(m)
2 copies of (m� 2)Km,

which brings the number of independent sets of sizem�2 up to the desiredm
m, and leaves

a shortfall sequence that is non-negative and (by an appropriate application of Lemma
2.4) increasing, with terms that are successively integer multiples of mm�3

,m
m�4

, . . ..
This construction can be iteratively continued until Gm is reached.

We modify this process slightly to obtain Hk.

Case 1, k = 1: Set H1 = Gm �Kmm�1 . Note that this requires neither Lemma 2.3 nor
Lemma 2.4.

Case 2, k 6= m, 1: At the moment when the number of independent sets of size k has
reached m

m, there are m
m independent sets of all sizes at least k, while the sequence

(ik�1(G), . . . , i1(G)) (where G is the graph constructed so far) is strictly decreasing, with
ik�1(G) = m

m � am�(k�1)m
k�1  m

m �m
m�1 (the equality coming from the proof of

Theorem 1.3, Part 1, and the inequality using Lemma 2.3), and with ij(G) a multiple of
m

j.
Successively join m

m�k�1 copies of kKm to G. This brings the number of independent
sets of size k up to m

m +m
m�1, and it adds

km
k�1

m
m�k�1  m

m�1

independent sets of size k � 1. The result is a graph G
0 with im(G0) = · · · = ik+1(G0) =

m
m, ik(G0) = m

m+m
m�1, with (ik�1(G0), . . . , i1(G0)) strictly decreasing, with ik�1(G0) 

(mm �m
m�1) +m

m�1 = m
m, and with ij(G) a multiple of mj . The iterative procedure

described above (for the construction of Gm) can now be continued to obtain Hk.

Case 3, k = m: Instead of starting the construction with mKm, we start with
K2m [ (m� 1)Km. This has 2mm independent sets of size m, and for 1  k  m� 1 it
has ✓

m� 1

(m� 1)� k

◆
m

k + 2m

✓
m� 1

m� k

◆
m

k�1

independent sets of size k (first consider those without a vertex from the K2m, and then
those with such a vertex).

Now consider the sequence (ik(K2m [ (m� 1)Km)1k=m�1. The successive terms are
integer multiples of mm�1

,m
m�2

, . . ., and the first term is

m
m�1 + 2m(m� 1)mm�2 = 2mm �m

m�1
.

By applying Lemma 2.4 (with (n, `) = (m,m� 1)) to the sequence (
�

m�1
(m�1)�k

�
m

k)1k=m�1,

and again (still with (n, `) = (m,m � 1)) to the sequence (
�
m�1
m�k

�
m

k�1)1k=m�1, we get
further that the sequence (ik(K2m[(m�1)Km)1k=m�1 is strictly decreasing. The iterative
procedure described above can now be implemented to obtain Hm.
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3 Matching permutations

We begin by observing quickly that not all 2n�1 unimodal permutations of {1, . . . , n} are
realizable as the permutation associated to a graph with largest matching n. Indeed, the
following lemma shows that m1(G) cannot be the largest entry of a matching sequence of
any graph whose largest matching has size at least 4, so that for n � 4 the permutation
n(n� 1) · · · 321 is not realizable. (Recall that all graphs under consideration are simple.)

Lemma 3.1. If ⌫(G) � 4 then m2(G) > m1(G).

Proof. We proceed by induction on e(G), the number of edges of G. In the base case,
e(G) = 4, G must consist of four vertex disjoint edges, and we have m2(G) = 6 >

4 = m1(G). For the induction step, let G be a graph on more than four edges with
⌫(G) � 4, and let uv be an edge in G (joining vertices u and v) chosen so that G1,
the graph obtained from G by deleting the edge uv, still has a matching with at least
four edges. Let G2 be obtained from G by deleting the vertices u and v. We have
m2(G) = m2(G1) +m1(G2) (the set of matchings of size 2 in G partitions into those
that do not include uv — m2(G1) many — and those that do — m1(G2) many). Also,
m1(G) = m1(G1) + 1. Now by induction m2(G1) > m1(G1), and also m1(G2) � 2 > 1,
because on deleting u and v from G at least two of the edges of any matching of size 4
remain. Combining we get m2(G) = m2(G1) +m1(G2) > m1(G1) + 1 = m1(G).

We make an incidental observation at this point. The matching polynomial of
a graph with maximum matching size n can be expressed in the form (1 + r1x)(1 +
r2x) · · · (1 + rnx) where the ri’s are real and non-negative; this is a consequence of a
theorem of Heilmann and Lieb [13]. To a sequence that arises as the coe�cient sequence
of a polynomial of the form (1+ r1x)(1+ r2x) · · · (1+ rnx) with ri real and non-negative,
we can associate permutations via (1). Because real-rooted polynomials have unimodal
coe�cient sequences, at most only the 2n�1 unimodal permutations of [n] can arise in
this context. The permutation n(n� 1)(n� 2) · · · 321 can arise: let all ri be equal, say
equal to r, so the polynomial becomes

1 +

✓
n

1

◆
rx+

✓
n

2

◆
r
2
x
2 + · · ·+

✓
n

n� 1

◆
r
n�1

x
n�1 + r

n
x
n
.

It’s easy to check that if r is su�ciently small,

r
n
< r

n�1

✓
n

n� 1

◆
< · · · <

✓
n

2

◆
r
2
<

✓
n

1

◆
r

so that this polynomial has associated with it the unique permutation n(n � 1)(n �
2) · · · 321. This shows that our observations about restrictions on the matching sequence
are not just restrictions coming in disguise from the real-rooted property of the matching
polynomial.

The proof of Lemma 3.1 generalizes considerably. We state and prove the generaliza-
tion first, and then consider the consequences for matching permutations, in particular
giving the proof of Theorem 1.7.
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Theorem 3.2. For each n � 4, and for each k = 1, . . . , bn/2c � 1, if ⌫(G) � n then

mk(G) < m`(G) for each ` satisfying k < ` < n� k.

Proof. We proceed by a double induction, with an outer induction on n, and an inner
induction on e(G), the number of edges of G. The base case of the outer induction,
n = 4, is the assertion that if ⌫(G) � 4 then m1(G) < m2(G), which is exactly Lemma
3.1.

For n > 4, assume that we already have the result for all 4  n
0
< n. Fix k,

1  k  bn/2c � 1. We will prove, by induction on e(G), that if ⌫(G) � n then
mk(G) < m`(G) for any ` strictly between k and n� k.

In the base case (e(G) = n) G must consist of n vertex disjoint edges, and we have
m`(G) =

�
n
`

�
>
�
n
k

�
= mk(G).

For the induction step in this inner induction, let G be a graph on more than n

edges, with ⌫(G) � n, and let uv be an edge in G, joining vertices u and v, chosen so
that G1, the graph obtained from G by deleting the edge uv, has a matching of size at
least n. As in the proof of Lemma 3.1, let also G2 be obtained from G by deleting the
vertices u and v. We have

m`(G) = m`(G1) +m`�1(G2) and mk(G) = mk(G1) +mk�1(G2). (12)

Now by the induction hypothesis on e(G), we have

m`(G1) > mk(G1). (13)

But also, we claim that
m`�1(G2) > mk�1(G2). (14)

If n = 5 then k = 1 and either ` = 2 or ` = 3, and (14) becomes either m1(G2) > 1
(in the case ` = 1; note that m0(G2) = 1) or m2(G2) > 1 (in the case ` = 2); both of
these hold since G2 has at least three vertex-disjoint edges. For n > 5 (14) follows from
the n� 2 case of the of the outer induction. Indeed, ⌫(G2) � n� 2 (removing u, v can
delete at most two of the edges from any matching of size n). Set n0 = n� 2, k0 = k � 1
and `

0 = `� 1. We have 1  k  bn/2c� 1 and k < ` < n� k, so 0  k� 1  bn/2c� 2
and k � 1 < `� 1 < n� k � 1, or 0  k

0  bn0
/2c � 1 and k

0
< `

0
< n

0 � k
0, and so the

appeal to the earlier case of the outer induction is valid.
Combining (13) and (14) with (12) yields m`(G) > mk(G), as required.

An immediate consequence of Theorem 3.2 is that for any graph G with ⌫(G) � n

we have mbn/2c�1(G) < mbn/2c(G), which says that the mode of the matching sequence
must occur at bn/2c or later. This means that Mn, the number of permutations of
[n] that can arise as the permutation associated with a graph with largest matching
having size n, satisfies Mn 

Pn�1
k=bn/2c�1

�
n�1
k

�
. This is asymptotically 2n�2 as n goes to

infinity; a factor of 2 smaller than the upper bound observed in [1].
A finer analysis of Theorem 3.2 yields the substantially smaller bound (5) on Mn. Let

(m1, . . . ,mn) be a matching sequence, with mode mt (perhaps obtained after breaking a
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tie). Any associated permutation (in one-line notation) puts {1, . . . , t� 1} in increasing
order and {t+ 1, . . . , n} in decreasing order in the first n� 1 spots, and puts t at the
end.

This permutation can be encoded by an U-D sequence of length n� 1 — each time
one sees a U, one enters the first as-yet-unused number from {1, . . . , t�1} (remembering
that these numbers should be used in increasing order); each time one sees a D, one
enters the first as-yet-unused number from {t + 1, . . . , n} (remembering that these
numbers should be used in decreasing order). For example,

UUDDDUUDUDDUU

would correspond to n = 14, t = 8, and would yield the permutation

1 2 14 13 12 3 4 11 5 10 9 6 7 8.

Notice that this is a bijective encoding — a unique permutation can be read from a
sequence. Notice also that in the U -D sequence one is never allowed to have an initial
substring that has three more D’s than U ’s, because the first time we see such an initial
string, say after j U ’s and (j + 3) D’s, we would have seen 1 through j, but not j + 1,
and we would have seen n through n� (j + 2), in particular including n� (j + 2), so
we would have mj+1 > mn�(j+2), violating Theorem 3.2. It follows that Mn is bounded
above by the number of U -D sequences of length n� 1 having no initial substring with
three more D’s than U ’s. We denote this number by C

(3)
n . The sequence (C(3)

n )n�1

begins (1, 2, 4, 7, 14, 25, 50, . . .), and is [17, A026010].

Rather than deriving an exact formula for C(3)
n (one appears at [17, A026010]), we

take a simpler approach. The quantity C
(3)
n is bounded above by the number of U -D

sequences of length n+ 1 that start with UU and have no initial substring with more
D’s than U ’s. This in turn is upper bounded by the number of U -D sequences of length
n+ 1 having no initial substring with more D’s than U ’s (with no restriction on how
the strings start). These sequences are also known as left factors of Dyck words, and
it is well-known (see, for example, [17, A001405] or [14, Proposition 1.6]) that there
are

�
n+1

b(n+1)/2c

�
such. By Stirling’s approximation to the factorial, this is asymptotically

c2n/
p
n (the constant c depending on the parity of n). This verifies (5) and completes

the proof of Theorem 1.7.

4 Questions and problems

A number of interesting problems remain concerning the behavior of the independent
set sequence of a graph. We begin with the natural refinement of our determination of
f(m).

Problem 4.1. For each permutation ⇡, determine g(⇡), the minimum order over all
graphs G for which ⇡ is an independent set permutation of G.
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We have shown that at most mm vertices is enough to induce the constant weak order
on [m] from an independent set sequence, but this is definitely not enough to realize all
weak orders; for example, the weak order m� 1 < m < m� 2 < m� 3 < · · · < 2 < 1
requires at least m

m + m � 2 vertices. Indeed, if G realizes this weak order, then
im(G) > im�1(G), and so, by (the contrapositive of) Theorem 1.3 (Part 2), im(G) � m

m.
But we also must have i1(G) > i2(G) > · · · im�2(G) > im(G), so i1(G) � m

m +m� 2,
so G must have at least mm +m� 2 vertices. In the other direction, we have shown
that fewer than m

m+2 vertices are su�cient to induce any weak order on m.

Problem 4.2. Determine the smallest order large enough to realize every weak order
on [m] as the weak order induced by the independent set sequence of some graph.

Problem 4.3. Do the same for weak orders consisting of singleton blocks; equivalently,
answer Problem 1.2 with the additional constraint that the permutations associated
with independent set sequences are required to be unique.

As discussed in the introduction, it is quite likely that the authors of [1] were thinking
of Problem 4.3 when they formulated Problem 1.2.

A fascinating question is raised in [1], that has attracted some attention, but
has remained mostly open. Although the independent set sequence of a graph is
unconstrained, if we restrict to special classes of graphs, then it can become constrained.
For example the independent set sequence of a claw-free graph is unimodal [12], and
so at most only the 2m�1 unimodal permutations of [m] can arise as the independent
set permutation of a claw-free graph with largest independent set size m. Alavi et al.
observed that the independent set sequences of stars and paths are both unimodal, and
asked:

Question 4.4. [1, Problem 3] Is the independent set sequence of every tree unimodal?

It is for all trees on 24 or fewer vertices [18, 20]. See, for example, [11] for recent
work and other references.

It had been conjectured by Levit and Mandrescu [15] that every bipartite graph has
unimodal independent sequence, and they obtained a partial result: if G is a bipartite
graph with ↵(G) = m � 1, then the final third of the independent set sequence is weakly
decreasing, i.e.,

id(2m�1)/3e(G) � · · · � im�1(G) � im(G).

The unimodality conjecture was, however, disproved by Bhattacharyya and Kahn [4].

Problem 4.5. Characterize the permutations that can occur as the independent set
permutations of a bipartite graph.

There is an interesting parallel to the case of well covered graphs. A graph is well
covered if all its maximal independent sets have the same size. It had been conjectured
by Brown, Dilcher, and Nowakowski [5] that every well covered graph has unimodal
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independent sequence, but this was disproved by Michael and Traves [16], who also
showed that the first half of the independent set sequence of a well covered graph is
increasing, i.e.,

i1(G) < i2(G) < · · · < idm/2e(G).

They formulated the roller-coaster conjecture, that for any m � 1 and any permutation
⇡ of [dm/2e,m] there is a well covered graph G with ↵(G) = m and with

i⇡([dm/2e)(G) < i⇡([dm/2e)+1(G) < · · · < i⇡(m)(G).

This was subsequently proved by Cutler and Pebody [7]. The analog of the roller-coaster
conjecture does not hold for Problem 4.5; for example, it is easy to see that for n � 7,
any bipartite graph G on n vertices has i2(G) > i1(G).

Turning to matching permutations, the incidental observation made after the proof
of Lemma 3.1 raises the following (perhaps easy) question.

Question 4.6. Which unimodal permutations of [n] can arise via (1) from the coe�cient
sequence of a polynomial of the form (1 + r1x)(1 + r2x) · · · (1 + rnx) with ri real and
non-negative?

Finally, the greater part of Problem 1.6 remains open.

Problem 4.7. Characterize the permutations that can occur as the matching permuta-
tion of a graph, and determine the growth rate of Mn, the number of permutations of
[n] that are matching permutations of some graph.

Acknowledgement: We thank the referees for their careful reading and helpful
suggestions on presentation.
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independence sequence of a graph is not constrained, Congr. Numer. 58 (1987),
15–23.

[2] Taylor Ball, David Galvin, Katie Hyry and Kyle Weingartner, Independent set and
matching permutations, arXiv:1901.06579v1.

[3] J. P. Barthelemy, An asymptotic equivalent for the number of total preorders on a
finite set, Discrete Math. 29 (1980), 311–313.

[4] Arnab Bhattacharyya and Je↵ Kahn, A bipartite graph with non-unimodal inde-
pendent set sequence, Elec. J. Comb. 20 (2013), #P11.

[5] J. I. Brown, K. Dilcher and R. J. Nowakowski, Roots of independence polynomials
of well covered graphs, J. Algebraic Combin. 11 (2000), 197–210.

17



[6] Gregory S. Call and Danial J. Velleman, Pascal’s matrices, Amer. Math. Monthly

100 (1993), 372–376.

[7] Jonathan Cutler and Luke Pebody, Maximal-clique partitions and the Roller Coaster
Conjecture, J. Combin. Th. Ser. A 145 (2017), 25–35.

[8] David C. Fisher and Jennifer Ryan, Bounds on the number of complete subgraphs,
Discrete Math. 103 (1992), 313–320.
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