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Abstract

In 1845 Bertrand postulated that there is always a prime between n and 2n, and
he verified this for n < 3× 106. Tchebychev gave an analytic proof of the postulate in
1850. In 1932, in his first paper, Erdős gave a beautiful elementary proof using nothing
more than a few easily verified facts about the middle binomial coefficient. We describe
Erdős’s proof and make a few additional comments, including a discussion of how the
two main lemmas used in the proof very quickly give an approximate prime number
theorem. We also describe a result of Greenfield and Greenfield that links Bertrand’s
postulate to the statement that {1, . . . , 2n} can always be decomposed into n pairs such
that the sum of each pair is a prime.

1 Introduction

Write π(x) for the number of primes less than or equal to x. The Prime Number Theorem
(PNT), first proved by Hadamard [5] and de la Vallée-Poussin [8] in 1896, is the statement
that

π(x) ∼ x

lnx
as x→∞ (1)

(that is, limn→∞(π(x) lnx)/x = 1; here ln indicates natural logarithm).
A consequence of the PNT is that for all ε > 0 there exists n(ε) > 0 such that for all

n ≥ n(ε), there is always a prime in the interval (n, (1 + ε)n], that is, there is a prime p
satisfying

n < p ≤ (1 + ε)n. (2)

Indeed, by (1) we have

π((1 + ε)n)− π(n) ∼ (1 + ε)n

ln(1 + ε)n
− n

lnn
→∞ as n→∞.

Using a more refined version of the PNT with an error estimate, we may prove the following
theorem.

Theorem 1.1 For all n ≥ 1 there is a prime p such that n < p ≤ 2n.
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This is Bertrand’s postulate, conjectured in the 1845, verified by Bertrand for all N < 3×106,
and first proved by Tchebychev in 1850. (See [6, p. 25] for a discussion of the original
references).

In his first paper Erdős [3] gave a beautiful elementary proof of Bertrand’s postulate which
uses nothing more than some easily verified facts about the middle binomial coefficient

(
2n
n

)
.

We describe this proof in Section 2 and present some comments, conjectures and consequences
in Section 3. One consequence is the following lovely theorem of Greenfield and Greenfield
[4].

Theorem 1.2 For n ≥ 1 the set {1, . . . , 2n} can be partitioned into pairs

{a1, b1}, . . . , {an, bn}

such that for each 1 ≤ i ≤ n, ai + bi is a prime.

This bears an amusing (completely superficial) resemblance to the famous Goldbach con-
jecture. Goldbach asserts that every even number at least 4 can be expressed as the sum of
two primes; Greenfield and Greenfield say that the set of positive integers up to every even
number can be partitioned into pairs that add to primes.

Another consequence of Erdős’ proof is an elementary proof of an approximate version of
(1).

Theorem 1.3 There are constants c, C > 0 such that for all x ≥ 2

c
x

lnx
≤ π(x) ≤ C

x

lnx
.

In particular, for all ε > 0 there is n(ε) > 0 such that for n ≥ n(ε)

(1− ε)x
log2 x

≤ π(x) ≤ (4 + ε)x

log2 x
. (3)

2 Erdős’s proof

Our presentation draws on [1, Chapter 2]. We consider the middle binomial coefficient(
2n
n

)
= (2n)!/(n!)2. An easy lower bound is(

2n

n

)
≥ 4n

2n+ 1
. (4)

Indeed,
(
2n
n

)
is the largest term in the (2n+ 1)-term sum

∑2n
i=0

(
2n
i

)
= (1 + 1)2n = 4n. Erdős’s

proof proceeds by showing that if there is no prime p with n < p ≤ 2n then we can put
an upper bound on

(
2n
n

)
that is smaller than 4n/(2n + 1) unless n is small. This verifies

Bertrand’s postulate for all sufficiently large n, and we deal with small n by hand.
For a prime p and an integer n we define op(n) to be the largest exponent of p that divides

n. Note that op(ab) = op(a) + op(b) and op(a/b) = op(a)− op(b). Note also that

op(n!) =
∑
i≥1

[
n

pi

]
;
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indeed, [n/p] is the number of multiples of p that do not exceed n, each of which contributes
1 to op(n!), [n/p2] is the number of multiples of p2 that do not exceed n, each of which
contributes an additional 1 to op(n!), an so on.

The heart of the whole proof is the following simple observation.

If n ≥ 3 and 2
3
n < p ≤ n then op

((
2n
n

))
= 0 (i.e., p 6 |

(
2n
n

)
). (5)

Indeed, for such a p

op

((
2n

n

))
= op((2n)!)− 2op(n!) = 2− 2.1 = 0.

So if n ≥ 3 is such that there is no prime p with n < p ≤ 2n, then all of the prime factors
of
(
2n
n

)
lie between 2 and 2n/3. (It is easy to see that

(
2n
n

)
can have no prime factor greater

than 2n, since such a factor would have to divide (2n)! and so divide some k ≤ 2n.) We will
show that each of these factors appears only to a small exponent, forcing

(
2n
n

)
to be small.

The following is the claim we need in this direction.

Claim 2.1 If p|
(
2n
n

)
then

pop((
2n
n )) ≤ 2n.

Proof: Let r(p) be such that pr(p) ≤ 2n < pr(p)+1. We have

op

((
2n

n

))
= op((2n)!)− 2op(n!)

=

r(p)∑
i=1

[
2n

pi

]
− 2

r(p)∑
i=1

[
n

pi

]

=

r(p)∑
i=1

([
2n

pi

]
− 2

[
n

pi

])
≤ r(p), (6)

and so
pop((

2n
n )) ≤ pr(p) ≤ 2n.

In (6) we use the easily verified fact that for all real x, 0 ≤ [2x] − 2[x] ≤ 1; indeed, this
quantity is 0 if x− [x] < 1/2 and is 1 otherwise. 2

Corollary 2.2 The number of prime numbers dividing
(
2n
n

)
is at least log2

(
2n
n

)
/ log2(2n).

Proof: Let p1, . . . , p` be the distinct primes dividing
(
2n
n

)
. We have(

2n

n

)
=

∏̀
i=1

p
opi((

2n
n ))

i

≤ (2n)` (7)

with (7) using Claim 2.1. Taking logarithms, the result follows. 2

Before writing down the estimates that upper bound
(
2n
n

)
, we need one more simple result.
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Claim 2.3 For all n ≥ 2,
∏

p≤n p ≤ 4n, where the product is over primes.

Proof: We proceed by induction on n. For small values of n, the claim is easily verified. For
larger even n, we have ∏

p≤n

p =
∏

p≤n−1

p ≤ 4n−1 ≤ 4n,

the equality following from the fact that n is even and so not a prime, and the first inequality
following from the inductive hypothesis. For larger odd n, say n = 2m+ 1, we have∏

p≤n

p =
∏

p≤m+1

p
∏

m+2≤p≤2m+1

p

≤ 4m+1

(
2m+ 1

m

)
(8)

≤ 4m+122m (9)

= 42m+1 = 4n.

In (8) we use the induction hypothesis to bound
∏

p≤m+1 p and we bound
∏

m+2≤p≤2m+1 p by

observing that all primes between m+2 and 2m+1 divide
(
2m+1
m

)
. In (9) we bound

(
2m+1
m

)
≤

22m by noting that
∑2m+1

i=0

(
2m+1
i

)
= 22m+1 and

(
2m+1
m

)
=
(
2m+1
m+1

)
and so the contribution to

the sum from
(
2m+1
m

)
is at most 22m. 2

We are now ready to prove Bertrand’s postulate. Let n ≥ 3 be such that there is no
prime p with n < p ≤ 2n. Then we have(

2n

n

)
≤ (2n)

√
2n

∏
√
2n<p≤2n/3

p (10)

≤ (2n)
√
2n
∏

p≤2n/3

p

≤ (2n)
√
2n42n/3. (11)

The main point is (10). We have first used the simple fact that
(
2n
n

)
has at most

√
2n prime

factors that do not exceed
√

2n, and, by Claim 2.1, each of these prime factors contributes at
most 2n to

(
2n
n

)
; this accounts for the factor (2n)

√
2n. Next, we have used that by hypothesis

and by (5) all of the prime factors p of
(
2n
n

)
satisfy p ≤ 2n/3, and the fact that each such

p with p >
√

2n appears in
(
2n
n

)
with exponent 1 (this is again by Claim 2.1); these two

observations together account for the factor
∏
√
2n<p≤2n/3 p. In (11) we have used Claim 2.3.

Combining (11) with (4) we obtain the inequality

4n

2n+ 1
≤ (2n)

√
2n42n/3. (12)

This inequality can hold only for small values of n. Indeed, for any ε > 0 the left-hand
side of (12) grows faster than (4 − ε)n whereas the right-hand side grows more slowly than
(42/3 + ε)n. We may check that in fact (12) fails for all n ≥ 468 (Mathematica calculation),
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verifying Bertrand’s postulate for all n in this range. To verify Bertrand’s postulate for all
n < 468, it suffices to check that

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631. (13)

is a sequence of primes, each term of which is less than twice the term preceding it; it follows
that every interval {n + 1, . . . , 2n} with n < 468 contains one of these 11 primes. This
concludes the proof of Theorem 1.1.

3 Comments, conjectures and consequences

A stronger result than (2) is known (due to Lou and Yao [7]): for all ε > 0 there exists

n(ε) > 0 such that for all n ≥ n(ε), there is always a prime in the interval (n, n + n
1
2
+ 1

22
+ε].

The Riemann hypothesis would imply that we could shorten this interval to (n, n+n
1
2
+ε], and

a very strong conjecture of Cramér [2] would imply we could shorten it to (n, n+(1+ε) ln2 n].
Here is a very lovely open question much in the spirit of Bertrand’s postulate.

Question 3.1 Is it true that for all n ≥ 2, there is always a prime p with n2 < p < (n+1)2?

As mentioned in the introduction, a consequence of Bertrand’s postulate is the appealing
Theorem 1.2. We give the proof here.

Proof of Theorem 1.2: We proceed by induction on n. For n = 1 the result is trivial. For
n > 1, let p be a prime satisfying 2n < p ≤ 4n. Since 4n is not prime we have p = 2n+m for
1 ≤ m < 2n. Pair 2n with m, 2n− 1 with m+ 1, and continue up to n+ dme with n+ bmc
(this last a valid pair since m is odd). This deals with all of the numbers in {m, . . . , 2n}; the
inductive hypothesis deals with {1, . . . ,m− 1} (again since m is odd). 2

Finally, we turn to the proof of Theorem 1.3. We begin with the upper bound. We have

√
x
π(x)−π(

√
x) ≤

∏
p≤x

p ≤ 4x.

The second inequality is Claim 2.3. For the first inequality, there are π(x) − π(
√
x) primes

in the interval (
√
x, x], and each of them is at least

√
x. It follows that

π(x) ≤ 4x

log2 x
+ π(
√
x) ≤ 4x

log2 x
+
√
x ≤ 6x

log2 x
,

the last inequality valid for all x ≥ 2 (a Mathematica calculation). This gives the right-hand
side of the first inequality in Theorem 1.3 (with C = 6); noting that

√
x = o(x/ log2 x) as

x→∞, we also get the right-hand side of (3).
For the lower bound on π(x), x ≥ 2, let 2n be the least even integer that is not smaller

than x. Note that 2n − 2 < x ≤ 2n, and that π(2n) ≤ π(x) + 1. Since the primes dividing(
2n
n

)
are all at most 2n, Corollary 2.2 gives

π(2n) ≥
log2

(
2n
n

)
log2(2n)

,
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and so, using
(
2n
n

)
≥ 4n/(2n+ 1) together with our observations on relations between x and

n, we get

π(x) ≥
log2

(
2x

x+3

)
log2(x+ 2)

=
x− log2(x+ 3)

log2(x+ 2)
.

A Mathematica calculation shows that this latter quantity is at least x/2 log2 x for all x ≥ 8.
This gives the left-hand side of the first inequality in Theorem 1.3 (with c perhaps smaller
that 1/2 to deal with x ∈ [2, 8)); noting that

x− log2(x+ 3)

log2(x+ 2)
∼ x

log2 x

as x→∞, we also get the left-hand side of (3).
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