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Abstract

Let it(G) be the number of independent sets of size t in a graph G. Alavi,
Erdős, Malde and Schwenk made the conjecture that if G is a tree then the
independent set sequence {it(G)}t≥0 of G is unimodal; Levit and Mandrescu
further conjectured that this should hold for all bipartite G.

We consider the independent set sequence of finite regular bipartite graphs,
and graphs obtained from these by percolation (independent deletion of edges).
Using bounds on the independent set polynomial P (G,λ) :=

∑
t≥0 it(G)λt for

these graphs, we obtain partial unimodality results in these cases.
We then focus on the discrete hypercube Qd, the graph on vertex set {0, 1}d

with two strings adjacent if they differ on exactly one coordinate. We obtain
asymptotically tight estimates for it(d)(Qd) in the range t(d)/2d−1 > 1− 1/

√
2,

and nearly matching upper and lower bounds otherwise. We use these estimates
to obtain a stronger partial unimodality result for the independent set sequence
of Qd.

1 Introduction and statement of results

For a (finite, simple, undirected, loopless) graph G = (V,E) set

it(G) = {I ∈ I(G) : |I| = t}

where I(G) is the collection of independent sets of G (sets of vertices spanning no

edges). The independent set sequence of G is the sequence {it(G)}α(G)
t=0 where α(G)
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is the size of the largest independent set in G. The independent set polynomial or
stable set polynomial of G, first introduced explicitly by Gutman and Harary [7], is
the polynomial

P (G, λ) =

α(G)∑
t=0

it(G)λt.

A sequence {ai}ni=0 is said to be unimodal (with mode at k) if

a0 ≤ a1 ≤ . . . ≤ ak ≥ ak+1 ≥ . . . ≥ an,

and the polynomial
∑n

i=0 aiλ
i is said to be unimodal if its sequence of coefficients is.

There has been some consideration in the literature of the question of the unimodality
of the independent set polynomial of a graph. There are two major positive results.
The first of these follows from the celebrated result of Heilmann and Lieb [9] to the
effect that for any graph G the matching polynomial

∑
i≥0mt(G)λt of G (where

mt(G) is the number of matchings of G of size t) has only real roots, implying by
a theorem of Newton (see for example [12, page 504]) that it is unimodal (in fact,
log-concave). Since independent sets of a fixed size in the line graph of a graph are
in bijection with matchings of that size in the original graph, Heilmann and Lieb’s
result shows that if G is the line graph of a graph, then P (G, λ) is unimodal.

The second of these positive results is due to Hamidoune [8], who showed that
if G is claw-free (that is, does not contain a star on four vertices as an induced
subgraph) then P (G, λ) is unimodal. Later Chudnovsky and Seymour [3] showed
that in this case P (G, λ) also has all real roots. Since line graphs are claw-free, this
result generalizes that of Heilmann and Lieb.

On the other hand, if G contains a claw then P (G, λ) may not be unimodal.
For example, the graph obtained from a claw by replacing each of the degree 1
vertices with a K4 (the complete graph on 4 vertices), the degree 3 vertex with a
K37, and all edges with complete bipartite graphs, has independent set polynomial
1 + 49λ+ 48λ2 + 64λ3. In fact, Alavi, Erdős, Malde and Schwenk [1] showed that in
general the independent set polynomial of a graph can have every possible pattern
of increases and decreases. Specifically, they showed that for any integer m ≥ 1 and
any permutation π of {1, . . . ,m}, there is a graph G with α(G) = m and with

iπ(1)(G) < iπ(2)(G) < . . . < iπ(m)(G). (1)

In the language of [1], the independent set polynomial of a general graph is uncon-
strained. Note that there are at most 2m = o(m!) permutations π of {1, . . . ,m} for
which (1) holds for some graph G satisfying α(G) = m and P (G, λ) unimodal.

Alavi, Erdős, Malde and Schwenk made the following positive conjecture.

Conjecture 1.1. If T is a tree then P (T, λ) is unimodal.
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In [11] Levit and Mandrescu make the stronger conjecture that P (G, λ) is uni-
modal if G is a König-Egerváry graph (a graph in which the size of the largest
independent set plus the size of the largest matching equals the number of vertices
in the graph). In particular, since all bipartite graphs are König-Egerváry graphs,
we have the following:

Conjecture 1.2. If G is bipartite then P (G, λ) is unimodal.

Very little progress has been made towards this conjecture; indeed, even Con-
jecture 1.1 remains open. A partial result of Levit and Mandrescu [11] is that for
G a bipartite graph, the final third of the coefficients of P (G, λ) form a decreasing
sequence, that is,

id(2α(G)−1)/3e(G) ≥ id(2α(G)−1)/3e+1(G) ≥ . . . ≥ iα(G)(G). (2)

In this note we consider the independent set polynomial of a graph drawn
from the families of regular and almost-regular bipartite graphs. One approach
to showing unimodality of the independent set polynomial of a graph is to obtain
upper and lower bounds on it(G) for each 0 ≤ t ≤ α(G), and this is the approach
that we take here. We begin with two simple bounds. Here and throughout
H(x) = −x log x− (1− x) log(1− x) is the binary entropy function and log = log2.

Lemma 1.3. For d-regular G (not necessarily bipartite),

it(G) ≤ exp2

{
H

(
2t

|V |

)
|V |
2

+
|V |
2d

}
. (3)

If G is bipartite then we also have

it(G) ≥
( |V |

2

t

)
≥ exp2

{
H

(
2t

|V |

)
|V |
2
− 1

2
log |V |

}
(4)

Proof: We begin with (3), which is based on the observation that for all t > 0 and
λ > 0 we have it(G)λt ≤ P (G, λ) and so

it(G) ≤ min
λ>0

{
P (G, λ)

λt

}
. (5)

We now use the following inequality, proved in [13]: for d-regular G (not necessarily
bipartite)

P (G, λ) ≤ 2
|V |
2d (1 + λ)

|V |
2 . (6)

(A weaker bound with |V |/d replacing |V |/(2d) had earlier been obtained in [2]).
Taking λ = 2t

|V (G)|−2t in (6) and plugging into (5) we get (3) for t 6= 0, |V |/2, and
these two extreme cases are trivial.
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The near-matching lower bound (4) is obtained by specifying a bipartition
V = E ∪ O of G and considering only those independent sets which are subsets of E .
The second inequality in (4) follows for all |V | ≥ 1 and 0 ≤ t ≤ |V |/2 from Stirling’s
formula. (Note that for regular bipartite G, α(G) = |V (G)|/2.)

The upper bound (3) is close to best possible; the graph consisting of disjoint
copies of Kd,d, the complete bipartite graph with d vertices in each class, shows that
|V |/2d cannot be replaced by c|V |/d for any c < 1/2.

Combining (3) and (4) we see that for regular, bipartite G we have it(G) ≈
(|V |/2

t

)
.

This suggests that in contrast to the general situation, for regular bipartite G the
independent set polynomial may be quite constrained (in the language of [1]), in the

sense that any sufficiently sparse subsequence of {it(G)}|V (G)|/2
t=0 should be unimodal.

To state a precise result in this direction, it will be helpful to set up some notation.

Definition 1.4. A sequence {ai}i≥0 is s-step monotone increasing on the interval
[a, b] (where a and b satisfy 0 ≤ a ≤ b) if for every a ≤ i ≤ j ≤ b with j − i ≥ s we
have ai ≤ aj. We define s-step monotone decreasing analogously.

Note that {ai}ri=0 being unimodal with mode at k is equivalent to {ai}ri=0 being
1-step monotone increasing on [0, k] and 1-step monotone decreasing on [k, r].

Definition 1.5. A bipartite graph G on 2n vertices has property (β, γ, s) if the
sequence {it(G)}t≥0 is s-step monotone increasing on the interval [βn, (1− γ)n/2]
and s-step monotone decreasing on the interval [(1 + γ)n/2, (1− β)n].

Note that property (0, 0, 1) is equivalent to the unimodality of {it(G)}nt=0 with mode
at n/2.

The first aim of this paper is to prove a number of results establishing property
(β, γ, s) for β and γ arbitrarily small constants and s = o(n).

Theorem 1.6. Fix ε > 0. There is C = C(ε) > 0 such that if G is a 2n-vertex,
d-regular bipartite graph, then G has property (0, ε, s) with

s = C max
{

log n,
n

d

}
.

We prove Theorem 1.6 in Section 2. Note that if d = ω(1) above, then s = o(n).
The condition that G be regular can be relaxed quite a bit; using a recent result

in the spirit of (6) obtained in [4] we may extend Theorem 1.6 to all bipartite graphs
which are suitably close to regular. Specifically, let G be a bipartite graph on 2n
vertices with bipartition classes E and O (with |O| ≥ |E|), let d be an arbitrary
positive parameter and let

h(G, d) =
1

d
+
|{v ∈ E : d(v) < d}|

n
+

1

dn

∑
v∈O

(d(v)− d)1{d(v)≥d} +
|O| − |E|

n
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(where 1E is the indicator function of the event E). The parameter h(G, d) is
intended to capture the extent to which G is “almost d-regular”: h(G, d) being close
to 1/d (the value it takes when G is d-regular) means that G has not too many low
degree vertices, that the sum of the degrees of high degree vertices is not too large,
and that the difference between the sizes of the partition classes is not too great.

Similar to Theorem 1.6, we have the following statement, whose proof is also
given in Section 2.

Theorem 1.7. Fix ε > 0. There is C = C(ε) > 0 such that if G is a 2n-vertex
bipartite graph and d is an arbitrary positive parameter, then G has property (ε, ε, s)
with

s = C max {log n, nh(G, d)} .

This result is mainly of interest when s = o(n), that is, when there is a choice
of d for which h(G, d) = o(1). One quite general situation in which this occurs is
in percolation. Given a graph G and a parameter 0 ≤ p ≤ 1, let Gp be a random
subgraph of G obtained by deleting each edge independently with probability 1− p
(so

Pr (Gp = H) = p|E(H)|(1− p)|E(G)|−|E(H)|).

In [4, Section 4] it is shown that if G is a d-regular bipartite graph on 2n vertices,
and Gp is obtained from G by percolation with p ≥ f(d)/d for an arbitrary function
f(d) = ω(1), then there is a function g(d) = o(1) such that with probability at least
1− g(d), we have that h(Gp, d′) ≤ g(d) (where d′ = dp− (2dp)1/2f(d)1/4). We thus
have the following corollary of Theorem 1.7.

Corollary 1.8. Fix ε > 0. Let G be a d-regular bipartite graph on 2n vertices. Let
p = f(d)/d for an arbitrary function f(d) = ω(1). There are functions g(d) = o(1)
and s(n, d) = o(n) such that with probability at least 1 − g(d), Gp has property
(ε, ε, s(n, d)).

A particularly interesting application of Corollary 1.8 is to the random equi-
bipartite graph G(n, n, p). This is the graph on vertex set E ∪ O with |E| = |O| = n
in which the edge {u, v} (u ∈ E , v ∈ O) is present with probability p, independently
for all choices of u and v. (In other words, G(n, n, p) is the result of percolation on
Kn,n with parameter p.)

Corollary 1.9. Fix ε > 0. Let p = ω(1)/n. There is a function s(n) = o(n) so that
almost surely (with probability tending to 1 as n goes to infinity) the random bipartite
graph G(n, n, p) has property (ε, ε, s(n)).

In other words, almost all equi-bipartite graphs exhibit partial unimodality of
the independent set sequence. (See [6] for further results in this direction.)

The bound in (6) is valid for all d-regular graphs, and we expect that it, as well
as both the upper and lower bounds on it(G) ((3) and (4)), can be significantly
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improved if further structural conditions are put on G. In [5] the programme of
improving (6) is carried out in the case when G is the discrete hypercube Qd. This
is the graph on vertex set V = {0, 1}d with two strings adjacent if they differ on
exactly one coordinate. It is a d-regular bipartite graph with bipartition classes
E and O, where E is the set of vertices with an even number of 1’s. Note that
|E| = |O| = α(Qd) = 2d−1. The following bound is obtained in [5]. (All asymptotic
statements in what follows are as d→∞.)

Theorem 1.10. There is a c > 0 and a function f(d)→ 0 such that for λ > c log d
d1/3

,

P (Qd, λ) = 2(1 + λ)2
d−1

exp

{
λ

2

(
2

1 + λ

)d
(1 + f(d))

}
.

This generalizes work of Korshunov and Sapozhenko [10], who had shown

P (Qd, 1) = (2
√
e+ o(1))22d−1

.

Using Theorem 1.10 (or rather, using two of the intermediate inequalities that
ultimately lead to the theorem), we can significantly improve the bounds on it(Qd)
given by (3) and (4), obtaining optimal (asymptotically matching) bounds for a large
range of values of t.

Theorem 1.11. There is a constant c > 0 and a function f(d) → 0 such that if
t = t(d) eventually (i.e., for all but finitely many d) satisfies

2d−1
(
c log d

d1/3

)
≤ t ≤ 2d−1

(
1− 1√

2
+

2 log d

d

)
(7)

then

it(Qd) =

(
2d−1

t

)
exp

{
t

(
1− t

2d−1

)d−1
(1 + f(d))

}
.

If t eventually satisfies

2d−1
(

1− 1√
2

+
2 log d

d

)
≤ t ≤ 2d−1 (8)

then

it(Qd) ∼ 2

(
2d−1

t

)
exp

{
t

(
1− t

2d−1

)d−1}
.

After some groundwork in Section 3.1, we prove Theorem 1.11 in Section 3.2.

A corollary of Theorem 1.11 is that the quantity it(Qd) undergoes a transition
around t = 2d−2, in a window of width O(1/d). This is analogous to [5, Corollary
1.2].
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Corollary 1.12. If t = t(d) = 2d−1
(

1
2

+ g(d)
d

)
then

it(Qd)

2
(
2d−1

t

) →

∞ if g(d)→ −∞
exp

{
e−2k/2

}
if g(d)→ k, a constant

1 if g(d)→ +∞

as d→∞.

We now turn to considering the unimodality of P (Qd, λ). By direct counting this
polynomial may be shown to be unimodal for all d ≤ 5 (although for 3 ≤ d ≤ 5 it
has some non-real roots). For larger d, a corollary of Theorem 1.6 is that for all
ε > 0 there is a constant C = C(ε) > 0 such that Qd has property (0, ε, C2d/d).
By examining the error terms in the asymptotic estimates of it(Qd) provided by
Theorem 1.11, we are able to obtain much stronger partial unimodality result for
P (Qd, λ), and in particular extend Levit and Mandrescu’s observation (2) (in the
particular case of G = Qd) to a wider range of coefficients.

Theorem 1.13. For all sufficiently large d it holds that

ip(Qd) < ip+1(Qd) < . . . < i2d−2−15d2(Qd)

where p = [(1− 1/
√

2 + 2 log d/d)2d−1], and

i2d−2+5d4(Qd) > i2d−2+5d4+1(Qd) > . . . > i2d−1(Qd).

We give the proof in Section 3.3. We have not made an attempt to optimize the
coefficients of d2 and d4 here. The proof strategy is to show that for p ≤ t ≤ t+ 1 ≤
2d−2− 15d2 our upper bound on it(Qd) from Theorem 1.11 is eventually smaller than
our lower bound on it+1(Qd) (with a similar approach for 2d−2+5d4 ≤ t ≤ t+1 ≤ 2d−1).
Below p the upper and lower bounds on it(Qd) provided by Theorem 1.11 are too far
apart to be of any use, and in the neighbourhood of t = 2d−2 the sequence {it(Qd)}
seems to be too flat for the present approach to be helpful.

2 Proofs of Theorems 1.6 and 1.7

We begin with the proof of Theorem 1.6. Let j and ` satisfy 0 ≤ j ≤ ` ≤ (1− ε)n/2.
By (3) and (4), a sufficient condition for i`(G) > ij(G) is

H

(
`

n

)
−H

(
j

n

)
>

1

d
+

log 2n

2n
. (9)

By the mean value theorem,

H

(
`

n

)
−H

(
j

n

)
=

(
`

n
− j

n

)
H ′(ξ)
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for some ξ ∈ (`/n, j/n). Since the minimum of H ′(x) on [0, (1 − ε)/2] is achieved
at x = (1− ε)/2 and is a positive constant depending on ε, we get that a sufficient
condition for i`(G) > ij(G) is

`− j ≥ C(ε)
(n
d

+ log 2n
)
.

For j and ` satisfying (1 + ε)n/2 ≤ ` ≤ j ≤ n the proof is almost identical, once we
observe that H(x) is symmetric around x = 1/2.

In order to prove Theorem 1.7, we need an analog of (3) for the family of G’s
under consideration in that theorem. The following result is a special case of a
general result on graph homomorphisms from [4, Section 3]. For λ1, λ2 > 1,

2n∑
t=0

it(G)λt1λ
2n−t
2 ≤ (λ1λ2 + λ22)

nC(λ1, λ2)
nh(G,d) (10)

where C(λ1, λ2) may be taken to be max {256, λ1 + λ2}. It follows that for all fixed
λ > 0,

P (G, λ) ≤ (1 + λ)nC(λ)nh(G,d) (11)

where C(λ) > 0 goes to infinity both as λ goes to 0 and as λ goes to infinity. Indeed,
if λ ≥ 1 then we may take λ1 = 2λ and λ2 = 2 in (10) to get

P (G, λ) = λ−2n2

2n∑
t=0

it(G) (λ1/λ2)
t ≤ (1 + λ)n max {256, 2(1 + λ)}nh(G,d)

while if λ < 1 then we may take λ1 = 2 and λ2 = 2/λ to get

P (G, λ) ≤ (1 + λ)n max {256, 2(1 + 1/λ)}nh(G,d) ,

showing that we may take C(λ) to be 2(1 + λ) for λ ≥ 127, to be 256 for 1/127 ≤
λ ≤ 127, and to be 2(1 + 1/λ) for λ ≤ 127.

Using (11) in place of (6), we may reproduce the derivation of (3) to obtain the
following upper bound on it(G) for G satisfying the conditions of Theorem 1.7:

it(G) ≤ exp2

{
H

(
t

n

)
n+ C(t, n)nh(G, d)

}
where C(t, n) > 0 may be taken as follows:

C(t, n) =


log
(

2n
n−t

)
if 127n

128
≤ t

8 if n
128
≤ t ≤ 127n

128

log
(
2n
t

)
if t ≤ n

128
.
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It follows that for ε > 0 there is C(ε) > 0 such that in the range t ∈ [εn, (1− ε)n]
we have

it(G) ≤ exp2

{
H

(
t

n

)
n+ C(ε)nh(G, d)

}
. (12)

Noting that (4) is still valid in the setting of Theorem 1.7, it follows from (12) (just
as (9) followed from (3)) that for all ε > 0, if j and ` satisfy εn ≤ j ≤ ` ≤ (1− ε)n/2,
then a sufficient condition for i`(G) > ij(G) is

H

(
`

n

)
−H

(
j

n

)
> C(ε)h(G, d) +

log 2n

2n
.

The proof of Theorem 1.7 now goes through exactly as the proof of Theorem 1.6.

3 Proofs of Theorems 1.11 and 1.13

3.1 Preliminaries

We begin with some notation. For A ⊆ V (= {0, 1}d) write N(A) for the set of
vertices outside A that are neighbours of a vertex in A and set

[A] = {v ∈ V : N({v}) ⊆ N(A)}.

Note that if A is an independent set then A ⊆ [A]. Say that A ⊆ E (or O) is small
if |[A]| ≤ 2d−2 and 2-linked if A ∪N(A) induces a connected subgraph of Qd. Any
A can be decomposed into its maximal 2-linked subsets; we refer to these as the
2-components of A, and write k(A) for the number of 2-components of A and cl(A)
for the size of the largest 2-component of A. Finally, for all λ > 0 and a, g ≥ 0 we
define a function Fλ(a, g) by

Fλ(a, g) = λa(1 + λ)−g.

There are two bounds from [5] (intermediate steps in the derivation of Theorem
1.10) that we will make use of.

Lemma 3.1. There is a constant c > 0 such that for all λ > c log d
d1/3

we have

∑
A⊆E small

Fλ(|A|, |N(A)|) ≤ exp

{
λ

2

(
2

1 + λ

)d
+
d2λ2(1 + λ)22d

(1 + λ)2d

}
(13)

as well as, for fixed k ≥ 1,∑
A⊆E small, 2−linked, |A|≥k

Fλ(a, g) ≤ ek−1d2k−22dFλ(k, kd− 2k(k − 1)). (14)

Proof: The first inequality is [5, Equation (23)] and the second is [5, Corollary
3.11].
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3.2 Proof of Theorem 1.11

We assume throughout that

t ≥
(
c log d

d1/3

)
2d−1

with c the same as the constant appearing in the range of validity of (13) and (14).
We also, where necessary, assume that d is large enough to support our assertions.
All asymptotic statements in what follows will be as d→∞.

3.2.1 Lower bounds on it(Qd)

For the lower bounds in Theorem 1.11, we may assume t ≤ 3
4
2d−1 (any constant greater

than 1/2 would do in place of 3/4 here) since for t ≥ 3
4
2d−1, t

(
1− t

2d−1

)d−1
= o(1)

and so the bound

it(Qd) ≥ (2− o(1))

(
2d−1

t

)
exp

{
t

(
1− t

2d−1

)d−1}

is trivial. For the remaining range of t, let f = f(t, d) be defined by

f = max

{
d, 57et

(
1− t

2d−1

)d−1}
. (15)

Both lower bounds in Theorem 1.11 will be based on the following inequality.

Lemma 3.2.

it(Qd) ≥ 2
∑

A⊆E, cl(A)≤1, |A|≤f

(
2d−1 − d|A|
t− |A|

)
.

Proof: We get a lower bound on it(Qd) by first choosing a set of vertices of size no
more than f , no two of which share a common neighbour, to be the intersection of
the independent set with one of the two partition classes, and then extending it by
choosing an arbitrary subset of the other class of appropriate size (note that for A
with cl(A) = 1, |N(A)| = d|A|). This gives

it(Qd) ≥
∑

A⊆E or A⊆O, cl(A)≤1, |A|≤f

(
2d−1 − |N(A)|

t− |A|

)

= 2
∑

A⊆E, cl(A)≤1, |A|≤f

(
2d−1 − d|A|
t− |A|

)
.
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The equality above is valid since f < t/2 and so there is no overlap between the
independent sets of size t which intersect E in no more than f vertices and those
which intersect O in no more than f vertices.

For all a and g with g ≥ a, and 0 ≤ t ≤ 2d−1, we have the identity(
2d−1 − g
t− a

)
=

(
2d−1

t

)
ta(2d−1 − t)g−a

(2d−1)g
E(a, g)

= Fλ(t)(a, g)

(
2d−1

t

)
E(a, g) (16)

where λ(t) = t/(2d−1 − t) and

E(a, g) =

∏a−1
i=0

(
1− i

t

)∏g−a−1
i=0

(
1− i

2d−1−t

)
∏g−1

i=0

(
1− i

2d−1

) .

Note that

Fλ(t)(k, dk) =

(
t

2d−1

(
1− t

2d−1

)d−1)k

, (17)

and that for fixed d and k, the quantity on the right-hand side in (17) is decreasing
in t for the range of t that we are considering (indeed, it is decreasing for t ≥
(2d−1 − 1)/(d− 1)), a fact that we will use repeatedly in the calculations that follow,
usually without comment. For those A contributing to the sum in Lemma 3.2,

E(|A|, d|A|) ≥
f−1∏
i=0

(
1− i

t

) (d−1)f−1∏
i=0

(
1− i

2d−1 − t

)
≥ exp

{
−f

2

t
− d2f 2

2d−1 − t

}
≥ exp

{
−2f 2

t

}
. (18)

In the second inequality we use 1− x ≥ e−2x for 0 ≤ x ≤ 1/2. The use is valid since
both f ≤ t/2 and f ≤ (2d−1 − t)/(2d) hold.

The number of ways of choosing A ⊆ E with cl(A) ≤ 1 and |A| = k ≤ f is at
least ∏k−1

i=0

(
2d−1 − id2

)
k!

≥ (2d−1)k

k!
exp

{
−f

2d2

2d−1

}
≥ (2d−1)k

k!
exp

{
−f

2

t

}
(19)
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since each choice of vertex in A eliminates from consideration at most d2 other
vertices. By (16) each such A contributes

Fλ(t)(k, dk)

(
2d−1

t

)
E(|A|, d|A|) (20)

to the sum in Lemma 3.2. Combining (17), (18), (19) and (20) with Lemma 3.2 we
get

it(Qd) ≥ 2

(
2d−1

t

)
exp

{
−3f 2

t

}∑
k≤f

1

k!

(
t

(
1− t

2d−1

)d−1)k

. (21)

Using k! ≥ (k/e)k and the lower bound on f from (15) we have

∑
k≤f

1

k!

(
t

(
1− t

2d−1

)d−1)k

≥ E0 exp

{
t

(
1− t

2d−1

)d−1}

where

E0 = 1− 2

(
et
(
1− t

2d−1

)d−1
f

)f

exp

{
−t
(

1− t

2d−1

)d−1}
and so (21) becomes

it(Qd) ≥ 2

(
2d−1

t

)
exp

{
t

(
1− t

2d−1

)d−1}
E1 (22)

where

E1 = exp

{
−3f 2

t

}
E0.

The dominating term here is exp{−3f 2/t}. For t satisfying (7)

E1 ≥ exp

{
−o

(
t

(
1− t

2d−1

)d−1)}

and for t satisfying (8) E1 ≥ 1− o(1), completing the lower bounds. For the purpose
of proving Theorem 1.13 we also note the following more precise bounds.

Lemma 3.3.

E1 ≥
{

1− 1
d5

if t satisfies (8)

1− 14d2

2d
if 2d−1

(
1
2
− 1

d

)
≤ t ≤ 3

4
2d−1.

12



3.2.2 Upper bounds on it(Qd)

We now turn to the upper bounds in Theorem 1.11. For any I ∈ I(Qd) we have
[I ∩ E ] ∩ [I ∩ O] = ∅. Since Qd has a perfect matching, it follows that at least one
of [I ∩ E ], [I ∩ O] is no larger than 2d−2, that is, that at least one of I ∩ E , I ∩ O is
small. This together with E-O symmetry leads to the bound

it(Qd) ≤ 2
∑

A⊆E small

(
2d−1 − |N(A)|

t− |A|

)
. (23)

We will split the sum in (23) into three cases. Say that small A ⊆ E is of type I if
|A| ≤ f , of type II if |A| > f and cl(A) ≤ 5, and of type III if |A| > f and cl(A) ≥ 6
(where f is as defined in (15)).

Case 1 - Type I A’s: We first consider the contribution to the sum in (23) from A
of type I. For these A we have

E(|A|, |N(A)|) ≤ exp

{
d2f 2

2d−1

}
(this is similar to the derivation of (18), except that in this case we are lower
bounding the numerator of E(|A|, |N(A)|)). Taking λ = λ(t) = t/(2d−1 − t) in (13)
and combining with (16) we find that the contribution to (23) from A of type I is at
most

2

(
2d−1

t

)
exp

{
t

(
1− t

2d−1

)d−1
+

d2t22d

(2d−1 − t)2

(
1− t

2d−1

)2d−2

+
d2f 2

2d−1

}
. (24)

Case 2 - Type II A’s: Next we consider the sum in (23) over A of type II. We
have (

2d−1 − g
t− a

)
= λ(t)a−t

(
2d−1 − g
t− a

)
λ(t)t−a

≤ λ(t)a−t(1 + λ(t))2
d−1−g

= (1 + λ(t))2
d−1

λ(t)−tFλ(t)(a, g)

= 2H( t

2d−1 )2d−1

Fλ(t)(a, g).

By Stirling’s formula, (more precisely, by the fact that for all n ≥ 1,

2nne−n
√
n ≤ n! ≤ 3nne−n

√
n),

this is at most 3× 2d/2
(
2d−1

t

)
Fλ(t)(a, g). It follows that the contribution to (23) from

A of type II is at most

6
(
2d/2

)(2d−1

t

) ∑
A⊆E small, cl(A)≤5, k(A)≥f/5

Fλ(t)(|A|, |N(A)|). (25)

To bound this sum, we make a number of observations.

13



• For each k ≥ f/5 there are at most 2k(d−1)/k! ways of choosing a fixed vertex
in each of the k 2-components of A, and at most 5k ways of assigning a size to
each 2-component.

• For each ` = 1, . . . , 5, the number of 2-linked subsets of E of size ` that include
a fixed vertex is at most (` − 1)!(d2)`−1. (Once j vertices have been chosen,
there are at most jd2 choices for the (j + 1)st.)

• Each A ⊆ E with |A| = ` ≤ 5 satisfies |N(A)| ≥ d`− 2`(`− 1). (Each vertex
of A has d neighbours, of which at least d− 2(|A| − 1) must be unique to it,
since a pair of vertices in Qd can have at most two common neighbours.)

• The quantity Fλ(a, g) is decreasing in g, and for each ` = 1, . . . , 5, (and
sufficiently large d)

(`− 1)!(d2)`−1Fλ(t)(`, d`− 2`(`− 1)) ≤ Fλ(t)(1, d).

All this together serves to bound the expression in (25) by

6
(
2d/2

)(2d−1

t

) ∑
k≥f/5

1

k!

(
5t

(
1− t

2d−1

)d−1)k

≤ 1

3f

(
2d−1

t

)
, (26)

the inequality following from the choice of f and the bound k! ≥ (k/e)k.

Case 3 - Type III A’s: Finally we consider the sum in (23) over A of type III.
Beginning with the same steps as in the case of A of type II, this is at most

6
(
2d/2

)(2d−1

t

) ∑
A⊆E small, cl(A)≥6

Fλ(t)(|A|, |N(A)|). (27)

We now use a multiplicative property of F : for any λ, if A′ is a 2-component of A
then

Fλ(|A|, |N(A)|) = Fλ(|A′|, |N(A′)|)Fλ(|A \ A′|, |N(A \ A′)|)

and so the sum in (27) is at most ∑
A⊆E small, 2−linked, |A|≥6

Fλ(t)(|A|, |N(A)|)

( ∑
A⊆E small

Fλ(t)(|A|, |N(A)|)

)
= S1S2.

By (13) we have

S2 ≤ exp

{
t

(
1− t

2d−1

)d−1
+

d2t22d

(2d−1 − t)2

(
1− t

2d−1

)2d−2
}

(28)
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and by (14) we have
S1 ≤ e5d102dFλ(t)(6, 6d− 60). (29)

Having examined the sum in (23) in each of the three possible cases, we now
combine (24), (26), (28) and (29) to find that

it(Qd) ≤ 2

(
2d−1

t

)
exp

{
t

(
1− t

2d−1

)d−1}
E2 (30)

where

E2 = exp

{
d2t22d

(2d−1 − t)2

(
1− t

2d−1

)2d−2

+
d2f 2

2d−1

}
+

1

3f
+

3e5d1023d/2Fλ(t)(6, 6d− 60) exp

{
d2t22d

(2d−1 − t)2

(
1− t

2d−1

)2d−2
}
.

For t satisfying (7)

E2 ≤ exp

{
o

(
t

(
1− t

2d−1

)d−1)}
and for t satisfying (8) E2 ≤ 1 + o(1), completing the upper bounds. For the purpose
of proving Theorem 1.13, we also note the following more precise bounds.

Lemma 3.4.

E2 ≤
{

1 + 1
d3

if t satisfies (8)

1 + 4d4

2d
if t ≥ 2d−1

(
1
2
− 1

d

)
.

3.3 Proof of Theorem 1.13

We will split the proof into four cases, according to various possible ranges for t,
specifically

(3/4)2d−1 ≤ t < 2d−1, (31)

2d−2 + 5d4 ≤ t < (3/4)2d−1, (32)

2d−1
(

1− 1√
2

+
2 log d

d

)
≤ t < 2d−1

(
1

2
− 1

d

)
, (33)

and

2d−1
(

1

2
− 1

d

)
≤ t < 2d−2 − 15d2. (34)

In each of the first two cases we will show that for sufficiently large d we have
it(Qd) > it+1(Qd), while in each of the last two cases we will show (again for
sufficiently large d) that it(Qd) < it+1(Qd).
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Case 1 - t satisfying (31): That it(Qd) > it+1(Qd) for t in this range follows from
(2).

Case 2 - t satisfying (32): By (22), (30) and Lemmas 3.3 and 3.4, for t in this
range it is enough to show that

2
(

1− 14d2

2d

) (
2d−1

t

)
exp

{
t
(
1− t

2d−1

)d−1}
2
(
1 + 4d4

2d

) (
2d−1

t+1

)
exp

{
(t+ 1)

(
1− t+1

2d−1

)d−1} > 1.

Since t
(
1− t

2d−1

)d−1
is decreasing in t, this inequality is implied by(

1− 14d2

2d

)
(t+ 1)(

1 + 4d4

2d

)
(2d−1 − t)

> 1.

For t satisfying (32) this is in turn implied by(
1− 14d2

2d

)
(2d−2 + 5d4 + 1)(

1 + 4d4

2d

)
(2d−2 − 5d4)

> 1,

which holds for all sufficiently large d.

Case 3 - t satisfying (33): In this range we wish to show it(Qd) < it+1(Qd). Again
by (22), (30) and Lemmas 3.3 and 3.4 it is enough to show that

2
(
1 + 1

d3

) (
2d−1

t

)
exp

{
t
(
1− t

2d−1

)d−1}
2
(
1− 1

d5

) (
2d−1

t+1

)
exp

{
(t+ 1)

(
1− t+1

2d−1

)d−1} < 1. (35)

Writing h(a, b) for a(1− b/2d−1)d−1 we have

h(t, t)− h(t+ 1, t+ 1) ≤ h(t, t)− h(t, t+ 1)

= h(t, t)

(
1−

(
1− 1

2d−1 − t

)d−1)

≤ h(t, t)

(
2(d− 1)

2d−1 − t

)
(36)

with (36) valid for sufficiently large d as long as 2d−1 − t ≥ 2. For t satisfying (33)
we therefore have

exp {h(t, t)− h(t+ 1, t+ 1)} ≤ exp

{
h(t, t)

(
2(d− 1)

2d−1 − t

)}
≤ exp

{
h
(
2d−3, 2d−3

)( 2(d− 1)

2d−1 − 2d−2

)}
≤ 1 + .76d
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(for large enough d) and so (35) in this range is implied by(
1 + 2

d3

)
(t+ 1)(

1− 1
d5

)
(2d−1 − t)

< 1.

This is in turn implied by (
1 + 2

d3

)
(2d−2 − 2d−1

d
+ 1)(

1− 1
d5

)
(2d−2 + 2d−1

d
)

< 1,

which holds for all sufficiently large d.

Case 4 - t satisfying (34): Again by (22), (30) and Lemmas 3.3 and 3.4 it is
enough to show that

2
(

1 + 4d4

2d

) (
2d−1

t

)
exp

{
t
(
1− t

2d−1

)d−1}
2
(
1− 14d2

2d

) (
2d−1

t+1

)
exp

{
(t+ 1)

(
1− t+1

2d−1

)d−1} < 1. (37)

For t satisfying (34) we use (36) to obtain

exp {h(t, t)− h(t+ 1, t+ 1)} ≤ 1 +
d2

2d

and so (37) is implied by (
1 + 5d4

2d

)
(t+ 1)(

1− 14d2

2d

)
(2d−1 − t)

< 1.

This in turn is implied by(
1 + 5d4

2d

)
(2d−2 − 15d2 + 1)(

1− 14d2

2d

)
(2d−2 + 15d2)

< 1

which holds for sufficiently large d.
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