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Reciprocals of thinned exponential series

John Engbers∗ David Galvin† Cliff Smyth‡
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Abstract

The reciprocal of e−x has a power series about 0 in which all coefficients are non-
negative. Gessel [3] considered truncates of the power series of e−x, i.e. polynomials

of the form

r
∑

n=0

(−1)n
xn

n!
, and established combinatorially that the reciprocal of the

truncate has a power series with all coefficients non-negative precisely when r is odd.
Here we extend Gessel’s observations to arbitrary “thinned exponential series”. To

be precise, let A ⊆ {1, 3, 5, . . .} and B ⊆ {2, 4, 6, . . .}, and consider the series

1−
∑

a∈A

xa

a!
+
∑

b∈B

xb

b!
.

We consider conditions on A and B that ensure that the reciprocal series has all
coefficients non-negative. We give combinatorial proofs for a large set of conditions,
including whenever 1 ∈ A and the endpoints of the maximal consecutive intervals in
A ∪B are odd integers.

In particular, the coefficients in the reciprocal series can be interpreted as ordered
set partitions of [n] with block size restrictions, or in terms of permutations with
restricted lengths of maximally increasing runs, suitably weighted.

1 Introduction and Statement of Results

The power series
∞
∑

n=0

(−1)n
xn

n!
has a reciprocal with only non-negative coefficients; specifi-

cally, for real x, we have

(

∞
∑

n=0

(−1)n
xn

n!

)−1

=
(

e−x
)−1

= ex =

∞
∑

n=0

xn

n!
.
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Gessel [3] observed that whether this non-negativity phenomenon extends to the recipro-

cals of partial sums of

∞
∑

n=0

(−1)n
xn

n!
seems to depend on the parity of the point of truncation

— in particular, computation suggests that for allm ∈ N,

(

2m
∑

n=0

(−1)n
xn

n!

)−1

has some nega-

tive coefficients, while

(

2m−1
∑

n=0

(−1)n
xn

n!

)−1

has only non-negative coefficients. Gessel gives

a lovely combinatorial proof of this latter fact, demonstrating that if the sequence (cn)n≥0

is defined via
(

2m−1
∑

n=0

(−1)n
xn

n!

)−1

=
∑

n≥0

cn
xn

n!
,

then cn counts the number of permutations of [n] := {1, . . . , n} in which every increasing
run has length congruent to 0 or 1 modulo 2m. This is a special case (b = 1, r = 2) of the
following more general result from [3]:

Theorem 1.1. ([3, Proposition 2.4]) Let m, b and r ≥ 2 be positive integers. The coeffi-
cient of xn/n! in

(

m−1
∑

k=0

(

xkrb

(krb)!
−

x(kr+1)b

((kr + 1)b)!

))−1

is the number of permutations of [n] in which every maximal increasing run has length
congruent to one of 0, b, . . . , (r − 1)b modulo mrb.

In particular, the coefficients in the reciprocal series are all non-negative.
Inspired by this result, we take a combinatorial approach to significantly extend the

scope of Gessel’s observations.

To state our results precisely, let O = {1, 3, 5, . . .} denote the odd natural numbers
and E = {2, 4, . . .} denote the positive even natural numbers, and let A ⊆ O and B ⊆ E .
Consider the power series

FA,B(x) = 1−
∑

a∈A

xa

a!
+
∑

b∈B

xb

b!
,

and let

GA,B(x) = (FA,B(x))
−1 =

∞
∑

n=0

cn
xn

n!

be the reciprocal of FA,B(x). A natural question to ask is: under what conditions does
the power series representation of G about 0 have all coefficients cn non-negative? And
when G does have all coefficients cn non-negative, is there a natural set of objects that
cn counts? For results on these questions and their combinatorial interpretations in the
context of compositional inverses, see e.g. [2].
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If we are content to interpret cn as the number of elements in a signed set (a set in
which each element has weight either 1 or −1), or, equivalently, as the difference between
the sizes of two sets, then the matter is straightforward, as we show next. Write Ppos

n,A,B

for the set of ordered set partitions P = P1/ · · · /Pℓ of [n], in which all block sizes are in
A ∪ B, and which have an even number of blocks with sizes from B. Write Pneg

n,A,B for
those with an odd number of blocks with sizes from B. Note that

GA,B(x) =
1

FA,B(x)
=

∞
∑

k=0

(

∑

a∈A

xa

a!
−
∑

b∈B

xb

b!

)k

.

The coefficient of xn/n! in the final expression above is a sum over compositions of n with
all blocks coming from A∪B; the sign of the summand corresponding to a composition is
positive if the composition has an even number of blocks from B, and negative otherwise,

and the magnitude is the multinomial coefficient

(

n

a1, a2, . . . , b1, b2, . . .

)

, where the ai’s

and bi’s are the blocks of the composition. It immediately follows that we have that the
coefficient of xn/n! in (FA,B(x))

−1 is

|Ppos
n,A,B| − |Pneg

n,A,B|.

The drawback to this interpretation is that it gives no immediate information about the
sign of the coefficient, nor any obvious combinatorial explanation of why the sign might be
always non-negative for certain choices of A and B. One strategy for showing that GA,B(x)
has all coefficients non-negative is to exhibit an injection i from Pneg

n,A,B into Ppos
n,A,B or,

equivalently, an involution τ of the restricted partitions in Pneg
n,A,B ∪Ppos

n,A,B that moves all

elements in Pneg
n,A,B to elements in Ppos

n,A,B and fixes the elements in Ppos
n,A,B \ τ(Pneg

n,A,B).

As discussed earlier, Gessel [3] observes that in particular when A∪B = {1, . . . 2m−1}
then GA,B(x) has all coefficients non-negative. We obtain a broad generalization of this
(Theorem 1.4 below). We will need the following definitions.

Definition 1.2. For A ⊆ O and B ⊆ E , we say that A ∪ B is odd-ended if, when it is
written as the union of maximal intervals of consecutive integers, the endpoints of each
interval are odd numbers. A maximal element in a maximal interval is called a top element
and a minimal element in a maximal interval is called a bottom element.

Example 1.3. The set {1, . . . , 2m − 1} is odd-ended, and only contains one maximal
interval, with top element 2m− 1 and bottom element 1.

The set {1, 5, 9, 10, 11, 12, 13, 19, 20, 21, 22, . . .} = {1} ∪ {5} ∪ [9, 13] ∪ [19,∞) is odd-
ended and has four maximal intervals. The top elements are 1, 5, and 13, while the bottom
elements are 1, 5, 9, and 19.

Our first main result is as follows.

Theorem 1.4. Suppose that A ⊆ O and B ⊆ E with A ∪B odd-ended and 1 ∈ A.
Define (cn)n≥0 via

(

1−
∑

a∈A

xa

a!
+
∑

b∈B

xb

b!

)−1

=
∑

n≥0

cn
xn

n!
.
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Then the values cn are all non-negative integers, and moreover have a natural combinatorial
interpretation as the number of ordered set partitions of [n] whose blocks are either size
1 or size that is an endpoint of the maximal intervals, and these block sizes appear in
particular allowable orders as described in Corollary 3.6.

In Corollary 3.12, we illustrate that these coefficients count the permutations with
particular increasing run lengths, suitably weighted, which extends the results of Gessel [3].
Let [n] := {1, 2, . . . , n}. The coefficients cn for A∪B = [3] are given as sequence A317111
in OEIS. Those for A∪B = [5], [7], and [9] are given as sequences A322262, A322282, and
A322283 in OEIS, respectively [5]. Those for A ∪ B = {1, 3} or A ∪ B = {1, 2, 3, 5} are
simple examples where A ∪B is odd-ended whose corresponding coefficient sequences do
not appear in OEIS.

We also incorporate the integer parameters b ≥ 1 and r ≥ 2 into our results, which
we refer to as the b-stretched and r-stretched versions of our main result. The idea is to
stretch the set {1, 2, 3, 4, . . .} to {1, r, r + 1, 2r, . . .}, and then multiply each entry by b to
obtain {b, br, b(r + 1), 2br, . . .}. We then suppose that A ⊆ O∗ := {b, b(r + 1), . . .} (the
stretched odds) and B ⊆ E∗ := {br, 2br, . . .} (the stretched evens). We will again say that
A ∪B is odd-ended if the endpoints of the (stretched) maximal intervals again are “odd”;
in particular A ∪ B is odd-ended if kr ∈ B implies kr + 1 ∈ A and (k − 1)r + 1 ∈ A. We
make similar modifications to definitions throughout in the stretched context.

Theorem 1.5. Suppose that A ⊆ O∗ and B ⊆ E∗ with b ∈ A and A∪B odd-ended. Define
(cn)n≥0 via

(

1−
∑

a∈A

xa

a!
+
∑

b∈B

xb

b!

)−1

=
∑

n≥0

cn
xn

n!
.

Then the values cn are all non-negative integers, and moreover have a natural combinatorial
interpretation as the number of ordered set partitions of [n] whose blocks are either size 1
or size that is an endpoint of the stretched maximal intervals, and these block sizes appear
in particular allowable orders as stated in Corollary 4.5.

In Corollary 4.8, we illustrate that these coefficients count the permutations with
particular increasing run lengths, suitably weighted.

Note that the case b = 1 and r = 2 in Theorem 1.5 is simply Theorem 1.4. The
specifics of our combinatorial interpretations, which are direct extensions of the r = 2
version, are stated in Corollaries 4.5 and 4.8. Extending the results of Theorem 1.4 to
b > 1 is straight-forward, while extending to r > 2 requires a bit more care.

When we consider the r-stretched version from Theorem 1.5 with b = 1, in the special
case where A ∪B = {1, r, r + 1, 2r, . . .}, we can interpret

1

1− x+ xr

r! −
xr+1

(r+1)! +
x2r

(2r)! −
x2r+1

(2r+1)! + · · ·

as a series whose coefficients count the number of permutations on [n] so that the increasing
runs have length at most r− 1, which recovers a result of David and Barton ([1, pp. 156-
157], see also for example [4]). See Section 4.4.
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Gessel considers the following more general situation (see [3, Theorem 3.3]). Suppose
a(x) = a0+a1x+ · · ·+adx

d with a0 = 1, and further suppose that 1/a(x) is an (ordinary)
power series with all coefficients 0 or 1. Then the coefficients of the reciprocal of the
exponential series 1/(a0+a1x/1!+· · ·+adx

d/d!) are non-negative, and the coefficients have
a combinatorial interpretation in terms of lengths of permutation runs. Further, there is a
necessary and sufficient condition for such a(x) to meet the 0 and 1 reciprocal coefficients
property [3, Theorem 3.2]. Our Theorem 1.4 gives an interpretation when A ∪ B =
{1, 5, 6, 7}, that is, for the coefficients for the expression 1/(1− x− x5/5! + x6/6!− x7/7!).
This is not covered by Gessel’s theorem, as

1

1− x− x5 + x6 − x7
= 1 + x+ x2 + x3 + x4 + 2x5 + · · ·

and so not every coefficient is a 0 or 1.

Returning to the non-stretched setting, an obvious question is to determine necessary
and sufficient conditions (on A,B) for GA,B(x) to be non-negative. We show a necessary
condition, under the requirement that 1 ∈ A, in the following. Recall that when A ∪
B = {1, 2, 3, 4, . . .}, equivalently when {1, 2, 3, . . .} \ (A ∪ B) = ∅, the reciprocal has all
coefficients non-negative.

Theorem 1.6. Suppose that A ⊆ O and B ⊆ E with 1 ∈ A. Define (cn)n≥0 via

(

1−
∑

a∈A

xa

a!
+
∑

b∈B

xb

b!

)−1

=
∑

n≥0

cn
xn

n!
.

If the smallest positive number in {1, 2, 3, . . .} \ (A ∪ B) is 2m + 1, then the coefficient
c2m+2 is negative.

In other words, if the initial interval in A ∪ B ends in an even number, then the
reciprocal has a negative coefficient. This provides a combinatorial proof of Gessel’s initial
observation in [3] when A ∪B = [2m].

Computational evidence suggests that (still in the special case 1 ∈ A) if just the initial
interval ends in an odd number, then the reciprocal has non-negative coefficients.

Conjecture 1.7. Suppose that A ⊆ O and B ⊆ E with 1 ∈ A.
Define (cn)n≥0 via

(

1−
∑

a∈A

xa

a!
+
∑

b∈B

xb

b!

)−1

=
∑

n≥0

cn
xn

n!
.

If the smallest positive number in {1, 2, 3, . . .} \ (A∪B) is 2m, then all coefficients cn are
non-negative.

We are able to reduce Conjecture 1.7 to the particular case where A∪B = [2m− 1]∪
{2m+2, 2m+4, . . .} for some positive integer m; see Corollary 5.2. We then use analytic
arguments to prove Conjecture 1.7 in the cases where m = 1 and m = 2, see Theorems
5.3 and 5.4.
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These analytic techniques do not seem to support extending this argument much fur-
ther, as we discuss in Section 5 after the proofs. Further evidence in favor of Conjecture
1.7 is provided by computation that shows that if m ≤ 250 then cn ≥ 0 for n ≤ 2500.

Our combinatorial proofs all rely on an involution on the ordered set partitions of
[n] that fixes the underlying permutation and associates a non-negative coefficient to each
fixed permutation; see Section 2 for an overview of this involution. We can in fact show
that our method of proof has particular limitations that hinder its ability to prove the
sufficient condition found in Conjecture 1.7. See Section 5 for the details.

The rest of the paper is laid out as follows. In Section 2, we give a high-level overview of
the algorithm which is used throughout the paper, and illustrate the algorithm on several
explicit partitions. Then, in Section 3, we give the proof of Theorem 1.4 as well as the
combinatorial interpretations of the coefficients cn of the reciprocal. Section 4 extends the
proof to the stretched setting, giving both the proof of Theorem 1.5 and the corresponding
combinatorial interpretations. We end in Section 5 with the proof of Theorem 1.6 along
with the reasons why our algorithm is unable to prove Conjecture 1.7 in full. We then
use an analytic argument to reduce Conjecture 1.7 to a particular A∪B for each positive
integer m, and use that reduction to analytically prove the conjecture for m = 1 and
m = 2; we also give evidence that the natural adjustments to our analytic argument are
unable to fully resolve Conjecture 1.7 for all positive integers m.

2 Proof Ideas

In this section, we briefly sketch an algorithmically defined involution i, that is involved
in proving Theorems 1.4 and 1.5. We then illustrate how it works on some inputs.

Given a partition P of [n] whose elements in a block are listed in increasing order, the
algorithm attempts to perform one of two operations:

• if the block furthest to the right has a single element, it attempts to merge it with
the one to its left (subject to some conditions), or

• if the block furthest to the right has more than one element, it splits off its furthest
right element into a new singleton block.

If it cannot do either of these (e.g. because they will create blocks of forbidden sizes), it
will move to the next block of P to the left; occasionally it will need to also skip this next
block too. It takes some care to ensure the involution is well-defined and prove that it has
the properties we need. We will do this in Section 3, but first we illustrate the involution
operating on some particular inputs.

Example 2.1. Suppose A = {1, 3}, B = {2}, and n = 9. This means we have ordered
partitions of the set [9] into blocks, with the elements inside of a block written in increasing
order. Furthermore, the blocks can only contain 1, 2, or 3 elements.

• The partition P = 234/6/1/57/89 of [9] will map to 234/6/1/57/8/9, and this latter
partition will map back to the former partition 234/6/1/57/89.
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For future reference, we also note here that the underlying permutation for P is
234615789, and this is the same as the underlying partition for the image of P . This
property will always hold for our algorithm.

• The partition P = 234/1/56/78/9 will map to 234/1/56/789, and this latter parti-
tion will map back to the former partition.

• The partition P = 234/1/56/79/8 will skip the first singleton (as the entries of
merging blocks 79 and 8 are not in order), and then map to 234/1/56/7/9/8. This
latter partition will again skip the first singleton (as the entries of merging blocks 9
and 8 are out of order) and then map back to the former partition.

• The partition P = 134/28/567/9 will skip the first singleton (since blocks of size 4
are not allowed). It will then also skip the block 567 and move to considering block
28.

The reason for this somewhat surprising second skip, briefly, is that if not, the par-
tition P will instead map to 134/28/56/7/9, and this latter partition will not map
back to the former under this procedure (it will map to 134/28/56/79 to be consis-
tent with previously defined rules, and so our algorithm will not be an involution).
Therefore, to make this algorithm an involution, we also skip the block 567.

We also note that being odd-ended means that any even-sized block will be able to
either add or subtract a singleton and still have a block size in A ∪ B, thus mapping
elements of Pneg

n,A,B to elements of Ppos
n,A,B.

Finally, we briefly indicate how the procedure will change when considering the values
b > 1 and r > 2. When we have b > 1, we will view each individual number in [n]
as a group of size b, and when we have a value r > 2 we will translate from the set
{1, 2, 3, 4, 5, . . .} to the set {1, r, r + 1, 2r, 2r + 1, . . .}.

3 Proof of Theorem 1.4 and Combinatorial Interpretations

In this section, we prove Theorem 1.4 and provide the combinatorial interpretations of the
coefficients of the reciprocal series. We begin with the proof.

3.1 Proof of Theorem 1.4

Suppose that A ⊆ O and B ⊆ E satisfy that 1 ∈ A and A ∪B is odd-ended.
For each non-negative integer n we construct an injection from Pneg

n,A,B into Ppos
n,A,B by

constructing inductively for each n ≥ 0 a sign-reversing involution in on Ppos
n,A,B ∪ Pneg

n,A,B,

all of whose fixed points lie in Ppos
n,A,B. By sign-reversing, we mean that if i(P ) 6= P then

i(P ) ∈ Ppos
n,A,B if P ∈ Pneg

n,A,B, and i(P ) ∈ Pneg
n,A,B if P ∈ Ppos

n,A,B. Furthermore, we will show
that the underlying permutation on in(P ) is the same as the underlying permutation on
P (i.e. the relative order of the elements of [n] in the ordered partition is not changed by
in). The inductive procedure can equivalently be thought of as an iterative algorithm on
a given ordered partition.

7



Constructing i0: When n = 0 there is a unique ordered partition, the empty partition,
which is in Ppos

0,A,B as it has zero blocks with sizes from B. The involution is the identity
map, and the relative order condition is trivially satisfied.

Constructing i1: When n = 1 there is again a unique ordered partition, with one
singleton block {1}, which is in Ppos

1,A,B, as it has zero blocks with sizes from B. The
involution is again the identity map, and also the relative order condition is trivially
satisfied.

Constructing in for n ≥ 2: We take as our inductive hypothesis that for m < n, a sign-
reversing involution im on Ppos

m,A,B ∪ Pneg
m,A,B, all of whose fixed points lie in Ppos

m,A,B, has

been constructed with the property that for every P ∈ Ppos
m,A,B ∪Pneg

m,A,B, the permutation
underlying im(P ) is the same as that underlying P .

We first construct an explicit involution in on Ppos
n,A,B ∪ Pneg

n,A,B, that also satisfies the
relative order condition.

Suppose that P := P1/P2/ · · · /Pℓ is an ordered partition of [n] with |Pi| ∈ A ∪ B for
i = 1, . . . , ℓ, where the elements inside each Pi are listed in increasing order.

ALGORITHM: Case r = 2

(1) Suppose |Pℓ| = 1. Say block Pℓ consists of the single number k:

Case A If k is larger than the largest entry (the right-most entry) of block Pℓ−1,
and if also |Pℓ−1|+1 ∈ A∪B, then do a merge move: combine blocks Pℓ−1 and
Pℓ, so in(P ) = P1/P2/ · · · /Pℓ−1Pℓ.

Case B If k is smaller than the largest entry in Pℓ−1, then do a block skip: fix Pℓ

and next consider Pℓ−1, so in(P ) = in−1(P1/P2/ · · · /Pℓ−1)/Pℓ.
1

Case C If k is larger than the largest entry in Pℓ−1, and if also |Pℓ−1|+ 1 /∈ A∪B,
then do a freeze skip: fix both Pℓ and Pℓ−1, and next consider Pℓ−2, so in(P ) =
in−1−|Pℓ−1|(P1/P2/ · · · /Pℓ−2)/Pℓ−1/Pℓ.

2

(2) Suppose |Pℓ| > 1, with k the largest element of Pℓ:

Case D If |Pℓ| − 1 ∈ A∪B, then make a split move: replace the block Pℓ with two
blocks, Pℓ − k and k, in that order, so in(P ) = P1/P2/ · · · /Pℓ−1/Pℓ − k/k.

Case E If |Pℓ|−1 /∈ A∪B, then do a block skip, so in(P ) = in−|Pℓ|(P1/P2/ · · · /Pℓ−1)/Pℓ
3.

Example 3.1. We give examples of each case on the set [9] when considering the initial
block:

1Since [n] \ {k} is not (necessarily) equal to [n − 1], what we mean here is: Let P ′ = P1/P2/ · · · /Pℓ−1

(an ordered partition of [n]\{k}). Let ϕ be the unique order-preserving map from [n]\{k} to [n−1]. This
naturally induces a map ϕ′ from ordered partitions of [n] \ {k} to ordered partitions of [n − 1]. Then set
in(P ) = (ϕ′)−1(in−1(ϕ

′(P ′)))/Pℓ.
2To make this precise requires similar machinations as those required for Case B.
3To make this precise requires similar machinations as those required for Cases B and C.

8



Case A: With A = {1, 3} and B = {2}, the partition P = · · · /47/8 would do a merge
move producing i9(P ) = · · · /478.

Case B: With A = {1, 3} and B = {2}, the partition P = · · · /48/7 would do a block
skip on 7 and will move to consider block 48. Therefore i9(P ) = · · · /4/8/7.

Case C: With A = {1, 3} and B = {2}, the partition P = · · · /28/467/9 would do a
freeze skip, and next consider the block 28. So i9(P ) = · · · /2/8/467/9.

Note also here that P1 = · · · /458/7 would do a block skip and not a freeze skip, as
7 is smaller than 8. In this case i9(P1) = · · · /45/8/7.

Case D: With A = {1, 3, 5} and B = {4}, the partition P = · · · /3/2689 would make a
split move producing i9(P ) = · · · /3/268/9.

Case E: With A = {1, 3, 5} and B = {4}, the partition P = · · · /4/269 would do a block
skip on 269 (note 2 /∈ B) and next consider the singleton block 4, and use induction
on · · · /4.

Remark 3.2. The motivation for the freeze skip above is to make in an involution. To
illustrate this, suppose A = {1, 3}, B = {2}, the partition P = 134/28/567/9, and we
did not perform a freeze skip but instead a block skip on the first block. Then i9(P ) =
134/28/56/7/9 (as the block containing 9 is skipped, and a split move is performed on
567), and therefore i9(i9(P )) = 134/28/56/79 6= P .

We now prove that in has the properties required. A few of them are immediate. First,
the map in is indeed a map from Ppos

n,A,B ∪ Pneg
n,A,B to itself, as all block sizes of in(P ) are,

by construction, in A ∪ B. Second, it preserves underlying permutations, as only merges
and splits of blocks occur.

We next show that in is an involution, and we do this by induction on n with base
cases n = 0, 1 trivial. For n ≥ 2, we now show that whichever of Cases A, B, C, D or E
the ordered partition P = P1/ · · · /Pℓ falls into, we have in(in(P )) = P . We will use the
notation P ′ := in(P ) in each case.

Case A Here P ′ = P1/P2/ · · · /Pℓ−1Pℓ. The last block of P ′ has size greater than 1, and
|Pℓ−1Pℓ| − 1 = |Pℓ−1| ∈ A ∪B. So P ′ falls into Case D, and so in(P

′) = P .

Case B Here P ′ = in−1(P1/P2/ · · · /Pℓ−1)/Pℓ. The last block in this ordered partition is
a singleton, say with entry k. This number k is smaller than the right-most entry
of Pℓ−1, so P ′ falls into Case B (as the underlying permutation for P and P ′ is the
same), and

in(P
′) = in−1(in−1(P1/P2/ · · · /Pℓ−1))/Pℓ.

Since in−1 is an involution (by induction), in(P
′) = P .

Case C Here P ′ = in−1−|Pℓ−1|(P1/P2/ · · · /Pℓ−2)/Pℓ−1/Pℓ, Pℓ is a singleton block with
entry k and k is larger than the largest entry in Pℓ−1, and also |Pℓ−1| + 1 /∈ A ∪ B.
So P ′ falls into Case C, and therefore

in(P
′) = in−1−|Pℓ−1|(in−1−|Pℓ−1|(P1/P2/ · · · /Pℓ−2))/Pℓ−1/Pℓ.

Since in−1−|Pℓ−1| is an involution (by induction), in(P
′) = P .
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Case D Here P ′ = P1/P2/ · · · /Pℓ − k/k. The last block of P ′ has size 1, and the entry
in that block, k, is greater than all entries in the penultimate block of P ′. Also, the
size of the penultimate block of P ′ is |Pℓ| − 1 and (|Pℓ| − 1) + 1 ∈ A∪B. So P ′ falls
into Case A, and in(P

′) = P .

Case E Here P ′ = in−|Pℓ|(P1/P2/ · · · /Pℓ−1)/Pℓ. The last block of P ′ has size greater
than 1 and |Pℓ| − 1 /∈ A ∪B. So P ′ falls into Case E, and

in(P
′) = in−|Pℓ|(in−|Pℓ|(P1/P2/ · · · /Pℓ−1))/Pℓ.

Since in−|Pℓ| is an involution (by induction), in(P
′) = P .

We have thus shown that in is an involution.

To show that in is sign-reversing, we will show that if in(P ) 6= P , then in(P ) and P
differ by one in the number of blocks with even size. But this follows from the construction:
either blocks of size t− 1 and 1 merge to a single block of size t, or a block of size t > 1
splits to two with size t− 1 and 1. So if in(P ) 6= P , then exactly one of in(P ) and P is in
Ppos
n,A,B.
Finally we argue that for n ≥ 1, if any block size of P is in B, then in(P ) 6= P . As a

consequence, the only fixed ordered permutations have block sizes entirely in A. In fact,
we show something stronger, which will lead to our combinatorial interpretations. We
note that being odd-ended implies that all top and bottom elements are in A.

Lemma 3.3. Let n ≥ 1. With the involution in defined above, if in(P ) = P , then all
block sizes of P are 1 or a top element or a bottom element that is not equal to 1.

Furthermore, the necessary and sufficient conditions on the order of the block sizes of
P are that, (i), the top elements that are not also bottom elements must be part of a freeze
skip pair, and, (ii), the bottom elements that are not also top elements must not have a
singleton to the right (whose elements are collectively in increasing order) that is not in a
freeze skip pair.

We note that 1 is a bottom element, but we separate it out in Lemma 3.3 to emphasize
its importance in the algorithm. To better understand condition (ii), suppose that a
bottom element that is not a top element has a singleton to the right whose elements are
in increasing order. If that singleton is in a freeze-skip pair, then it must be the block that
is “frozen” and so has a second singleton to its right (whose elements are collectively in
increasing order), and therefore we must have 2 /∈ A∪B. So, if 2 ∈ A∪B, then (ii) simply
says that if you have a bottom element that is not a top element, then it does not have
a singleton to the right (whose elements are collectively in increasing order). Whereas if
2 /∈ A ∪B, then the second condition inductively says that if you have a bottom element
that is not a top element, then it does not have an odd number of singletons to the right
(whose elements are collectively all in increasing order).

Proof of Lemma 3.3. To prove the first statement, we proceed by induction on n, with the
result trivial for base case n = 1. Assume that the ordered partition P = P1/ · · · /Pℓ has
at least one block size not equal to 1 or a top element or a bottom element. We argue that

10



in(P ) 6= P . This is obvious in Cases A and D as here we immediately have in(P ) 6= P . In
Case B, we skip a block with size 1, in Case C we skip blocks of size 1 and a top element,
and in Case E we skip a block with size being a bottom element. In each of these three
Cases, we are left with a partition that still has at least one block size not equal to 1 or a
top element or a bottom element, and so by induction we obtain in(P ) 6= P .

The second statement is clear from the algorithm, as it is describing the properties
needed so that Cases A and D never occur when considering a fixed block, and so P is
fixed. Note that condition (ii) ensures that case A can’t happen and (i) ensures that case
D can’t happen.

Example 3.4. Suppose that A = {1, 3, 5} and B = {4}, so A∪B = {1, 3, 4, 5}. Then the
partition 1/234/5/6 of [6] is a fixed point of i6. However, the partition 123/4/5/6 is not
a fixed point of i6, since i6(123/4/5/6) = 1234/5/6.

This illustrates that partitions that merely satisfy that the block sizes are 1 or a top
element or a bottom element need not be fixed by the involution.

This completes the proof of the existence of a sign-reversing involution in on Ppos
n,A,B ∪

Pneg
n,A,B whose fixed points all lie in Ppos

n,A,B. In fact, we have proved that all of the fixed

points are elements of Ppos
n,A,B with all block sizes 1 or top elements or bottom elements

and that the orderings of these blocks must satisfy certain conditions.

3.2 General Combinatorial Interpretations

With the terminology from the proof and the characterization of the fixed points of in, we
have the following as a Corollary of the proof of Theorem 1.4 and Lemma 3.3.

Definition 3.5. Suppose that A ⊆ O and B ⊆ E with 1 ∈ A. Say that an ordered set
partition of [n] is A,B-good if:

• all parts are either size 1 or a size that is an endpoint of the maximal intervals of
A ∪B,

• writing the elements of a block in increasing order, within an increasing run in the
underlying permutation the following holds:

– all blocks with size equal to a top element that is not a bottom element is part
of a freeze skip pair, and

– all blocks with size equal to a bottom element that are not also top elements do
not have a singleton immediately to the right that is not in a freeze skip pair.

In light of Lemma 3.3, when A∪B is odd-ended, the ordered set partitions of [n] that
are A,B-good are exactly those which the involution in leaves fixed.

Corollary 3.6. Suppose that A ⊆ O and B ⊆ E with A∪B odd-ended and 1 ∈ A. Define
(cn)n≥0 via

(

1−
∑

a∈A

xa

a!
+
∑

b∈B

xb

b!

)−1

=
∑

n≥0

cn
xn

n!
.
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Then the values cn are all non-negative integers, and moreover have a natural combinatorial
interpretation as the number of A,B-good ordered set partitions of [n].

Instead of looking at ordered set partitions, we can also imagine the underlying per-
mutation being fixed, with a particular permutation being counted multiple times based
on the number of ways of partitioning the maximal increasing runs into allowable blocks
with an A,B-good ordered set partition.

Example 3.7. Let A ∪ B = {1, 3}. We illustrate the difference between fixing a permu-
tation and fixing an ordered set partition in our combinatorial interpretation.

(a) Fixing a permutation and counting the ordered set partitions that could have that
permutation underlying them:

Suppose we consider the permutation 456123 of [6]. This permutation is counted in
four ordered set partitions: as 456/123, 4/5/6/123, 456/1/2/3, or 4/5/6/1/2/3.

(b) Fixing the ordered set partition and counting the underlying permutations that give
that set partition:

Suppose that there are two blocks with size 3 in an ordered set partition of [6]. By

choosing the three elements to be in the first block, there are

(

6

3

)

= 20 permutations

that can have two blocks with size 3. Furthermore, there are 4

(

6

3

)

· 3! = 120 that

have one block of size three and three singleton blocks. Indeed, there are 4 places to
start the block of size 3, and the binomial coefficient and factorial count the number
of ways to distribute 3 elements to the block of size three and the singleton blocks.
Lastly, there are 6! composed of all singleton blocks. Note that for A ∪ B = {1, 3},

we indeed have c6 = 1220, which is computed as

(

6

3

)

+ 4 ·

(

6

3

)

· 3! + 6!.

When viewing the ordered set partitions that are fixed by in as grouped together based
on their underlying permutation, we arrive at the following definition.

Definition 3.8. Suppose that A ⊆ O and B ⊆ E with 1 ∈ A. Let ℓ ∈ [n]. The weight wℓ

is defined as the number of ordered set partitions of ℓ ordered elements so that:

• all blocks are either size 1 or a size that is an endpoint of the maximal intervals,

• all blocks with size equal to a top element that is not a bottom element is part of a
freeze skip pair, and

• all blocks with size equal to a bottom element that is not a top element do not have
a singleton immediately to the right that is not in a freeze skip pair.

Definition 3.9. For a permutation σ of [n], define the weight of σ, denoted wσ, as the
product of the weights of the lengths of all maximal increasing runs of σ.

Lemma 3.10. Given a permutation σ of [n], the number of A,B-good partitions that
could have σ underlying them is wσ.
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Proof. Suppose first that σ is a run, i.e. σ = 12 . . . n. By Definition 3.5, wn is the number
of A,B-good partitions that could have σ underlying them. Now suppose that σ has runs
of lengths l1, l2, . . . , lk. Consider an A,B-good partition with σ underlying it. Since a
block must have its elements in increasing order, each block must lie entirely in some run.
Similarly the elements in both blocks of a freeze-skip pair must come in increasing order
and thus also lie entirely in some run. Thus the number of A,B-good partitions that could
have σ underlying them is wl1wl2 · · ·wlk = wσ.

Example 3.11. If we let A ∪ B = {1, 3}, then the permutation σ = 4567123 has a
maximal increasing run of length 3 that satisfies w3 = 2 and a maximal increasing run of
length 4 that satisfies w4=3, and so wσ = 2 · 3 = 6.

Corollary 3.12. Suppose that A ⊆ O and B ⊆ E with A∪B odd-ended and 1 ∈ A. Define
(cn)n≥0 via

(

1−
∑

a∈A

xa

a!
+
∑

b∈B

xb

b!

)−1

=
∑

n≥0

cn
xn

n!
.

Then the values cn are all non-negative integers, and moreover have a natural combinatorial
interpretation as

cn =
∑

σ

wσ,

where the sum is over all permutations σ of [n].

Proof. By Corollary 3.6, cn is the number of A,B-good set partitions. By Lemma 3.10, if
σ is a permutation of [n], wσ is the number of A,B-good partitions that could have the
permutation σ underlying them.

3.3 Recovering Gessel’s Interpretation Involving Increasing Runs

In the special case A ∪ B = [2m − 1] for some positive integer m, we now show how we
can recover Gessel’s interpretation that cn is the number of permutations of [n] whose
maximal increasing runs all have length congruent to 0 or 1 mod 2m.

When m = 1, the reciprocal is (1 − x)−1 =

∞
∑

n=0

xn, which has exponential generating

function coefficient n!. Here Gessel’s characterization is trivial as every integer is congruent
to 0 or 1 mod 2, and so all n! permutations are counted and cn = n!.

For m > 1, the element 1 is a bottom element that is not a top element, and the
element 2m − 1 is a top element that is not a bottom element. Therefore, by Corollary
3.12 and Definition 3.5, an increasing run is made up from blocks with sizes 1 and 2m− 1;
further, the blocks of size 2m − 1 must have a block of size 1 to the right, and there are
no consecutive blocks of size 1.

It follows that the the maximal increasing runs in the permutation must have the blocks
of the ordered set partition appear in blocks that occur in freeze skip pairs, with the extra
possibility of one more singleton block on the left of these pairs. Since freeze skip pairs
have 2m elements in them, if there are j freeze skip pairs there are either 2mj elements
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in the increasing run (if there is no singleton block to the left) or 2mj + 1 elements in
the increasing run (if there is a singleton block to the left). This shows that all increasing
runs must have length 0 or 1 mod 2m. Finally, every permutation whose increasing runs
have length 0 or 1 mod 2m has a unique associated ordered set partition P where the
runs consist of freeze skip pairs (with a possible singleton block on the left). Therefore
the weight of each such maximal increasing run length is 1, and so the weight of those
permutations where all run lengths are 0 or 1 mod 2m is 1 (with any other permutation
having weight 0).

Example 3.13. With A = {1, 3} and B = {2} we have m = 2. We list the some
permutations on 9 elements with maximal increasing runs of size 0 or 1 mod 4, along with
the corresponding partitions fixed by i9 (with increasing runs underlined).

Permutation Permutation with Runs Marked Partition

987654321 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 9/8/7/6/5/4/3/2/1

234615789 2346 | 15789 234/6/1/578/9

721689543 7 | 2 | 1689 | 5 | 4 | 3 7/2/168/9/5/4/3

712689543 7 | 12689 | 5 | 4 | 3 7/1/268/9/5/4/3

Thus, our combinatorial interpretation for the special case when A ∪ B = [2m − 1] is
exactly as in [3].

When A ∪ B = {1, 2, 3, . . .}, the reciprocal is ex which has exponential generating
function coefficients all equal to 1. It is immediate from Corollary 3.12 and Definition 3.5
that, since 1 is the only endpoint of a maximal interval, that the coefficients cn count the
decreasing permutation that uses only singleton blocks, and so cn = 1.

These cover the examples containing a 1 and only a top element, and those containing
only a 1 and no other top or bottom elements.

Example 3.14. What if we had 1 and only a second bottom element, such as A ∪ B =
{1, 5, 6, 7, 8, . . .}? Then the maximal increasing runs have blocks with size 1 and 5 only.
Furthermore, no size 5 block can be have a block with size 1 to the right of it (with
elements in increasing order). We can, however, have arbitrarily many blocks with size 1
in a row in increasing order. Therefore we have wℓ = ⌊ℓ/5⌋ + 1 as there are this many
ways to choose the number of blocks of size 5 to use on the largest elements of the run,
with the rest of the blocks singletons.

4 Proof of Theorem 1.5 and Combinatorial Interpretations

In this section we prove Theorem 1.5 by considering b > 1 and r > 2. Following this, we
give the combinatorial interpretations of the results in this setting.
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4.1 Stretching by b

To obtain results for b > 1, we simply blow-up each element in [n] to a group of b distinct
increasing elements and run the Case r = 2 Algorithm on the groups. In particular, any
moves done on the ordered permutation of [n] translate to moving the corresponding group
of b blow-up elements in the natural way.

One tangible way to do this is to consider the elements of [n] as fractions

{

1

1
,
2

1
, . . . ,

n

1

}

,

and we then replace each element
i

1
with the b distinct elements

bi− b+ 1

b
,
bi− b+ 2

b
, . . . ,

bi

b

(corresponding to the fractions x with denominator b such that
b(i− 1)

b
< x ≤

bi

b
).

Example 4.1. If b = 3, A = {1, 3}, B = {2, 4}, and we had a partition P = 13/24 of [4],
recall that i4(P ) = 13/2/4. In the blow-up by b, we would replace this partition P with
the partition

1

3

2

3

3

3

7

3

8

3

9

3
/

4

3

5

3

6

3

10

3

11

3

12

3
,

and the algorithm performs a split move on the furthest right block, which now is a
blow-up to two groups each of size 3, to create

1

3

2

3

3

3

7

3

8

3

9

3
/

4

3

5

3

6

3
/

10

3

11

3

12

3
,

By ignoring the denominators, we can also view a blow-up of [n] to [bn] where i ∈ [n]
corresponds to the b elements b(i− 1) + j for 1 ≤ j ≤ b.

The proof generalizes easily with this modification, as each permutation element in
the original proof simply corresponds to b elements in this extension. Combinatorial
interpretations when b > 1 simply scale every element to a group with b elements in a
straightforward manner.

4.2 Stretching by r

We now describe how to obtain results for r > 2. We will assume that b = 1; using b > 1
will require the same modification given in the previous section.

As mentioned in the introduction, instead of considering A ∪B ⊆ N we now consider
A ∪ B ⊆ N

∗ = {1, r, r + 1, 2r, 2r + 1, . . .} = {x ∈ N : x ≡ 0, 1 mod r}. We write
N
∗ = O∗ ∪ E∗ where O∗ = {x ∈ N : x ≡ 1 mod r} is the set of r-stretched odds and

E∗ = {x ∈ N : x ≡ 0 mod r} is the set of r-stretched evens. We let A ⊆ O∗ and B ⊆ E∗.
Note also that this situation is not covered by Theorem 1.4, since for example if r = 3
then the number 4 would appear in B, not A.

Note: Throughout we will naturally generalize our definitions and assumptions to this
stretched setting. We will always assume 1 ∈ A. We will also assume that A ∪ B is
odd-ended, i.e. its maximal intervals in N

∗ have endpoints that all lie in O∗. In other
words, A ∪B must satisfy that if kr ∈ B, then kr + 1 ∈ A and (k − 1)r + 1 ∈ A.

We also then generalize the definition of top (bottom) element to indicate that x ∈
A ∪ B and the element above (below) it in N

∗ is not in A ∪B. For example, kr + 1 ∈ A
is a top element if (k + 1)r is not an element of A ∪B.
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Example 4.2. Suppose that r = 6. ThenO∗ = {1, 7, 13, 19, . . .} and E∗ = {6, 12, 18, 24, . . .}.
The set A ∪ B = {1, 7, 12, 13} ⊆ N

∗ is odd-ended in this setting with bottom elements 1
and 7 and top elements 1 and 13.

Given A∪B odd-ended, for each non-negative integer n we again inductively construct
an involution in on Ppos

n,A,B∪P
neg
n,A,B that is sign-reversing and moves every element in Pneg

n,A,B

(or, equivalently, only fixes partitions in Ppos
n,A,B). By saying in is sign-reversing, we mean

that if in(P ) 6= P then in(P ) ∈ Ppos
n,A,B if P ∈ Pneg

n,A,B and in(P ) ∈ Pneg
n,A,B if P ∈ Ppos

n,A,B.
As before, we will show that the underlying permutation on in(P ) is the same as the
underlying permutation on P . The inductive procedure can equivalently be thought of as
an iterative algorithm on a given ordered partition.

The main difference in this proof from the proof of Theorem 1.4 is that merges no longer
always involve a singleton and another block, but instead involve either r − 1 singletons
and a block with size kr + 1 or a singleton and a block of size kr (so that all sizes are in
A ∪ B). Having different types of merge moves means there are more cases to consider,
but the structure of the algorithm is the same. The base cases and inductive hypotheses
here are identical with those of Theorem 1.4.

Constructing i0: When n = 0 there is a unique ordered partition, the empty partition,
which is in Ppos

0,A,B , as it has zero blocks with sizes from B. The involution is the identity
map, and the relative order condition is trivially satisfied.

Constructing i1: When n = 1 there is again a unique ordered partition, with one
singleton block {1}, which is in Ppos

1,A,B, as it has zero blocks with sizes from B. The
involution here is again the identity map, and also the relative order condition is trivially
satisfied.

Constructing in for n ≥ 2: We take as our inductive hypothesis that for m < n, a sign-
reversing involution im on Ppos

m,A,B ∪ Pneg
m,A,B, all of whose fixed points lie in Ppos

m,A,B, has

been constructed with the property that for every P ∈ Ppos
m,A,B ∪Pneg

m,A,B, the permutation
underlying in(P ) is the same as that underlying P .

We first construct an explicit involution in on Ppos
n,A,B ∪ Pneg

n,A,B, that also satisfies the
relative order condition.

Suppose that P := P1/P2/ · · · /Pℓ is an ordered partition of [n] with |Pi| ∈ A ∪ B for
i = 1, . . . , ℓ, where the elements inside Pi are listed in increasing order.

ALGORITHM: Case r > 2

(1) Suppose that |Pℓ| = 1, say block Pℓ consists of the single number kr−1.

(A) Suppose |Pℓ−1| = kr.

Case A1 If kr−1 is smaller than the largest entry in Pℓ−1, then do a block skip
(we will also call a block skip that skips a singleton a singleton skip): fix
Pℓ and next consider Pℓ−1, so in(P ) = in−1(P1/P2/ · · · /Pℓ−1)/Pℓ.
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Case A2 If kr−1 is larger than the largest entry of Pℓ−1, make a 1-merge
move4: combine blocks Pℓ−1 and kr−1 to produce a block with size kr + 1,
so in(P ) = P1/P2/ · · · /Pℓ−1Pℓ.

(B) Suppose |Pℓ−1| = kr + 1.

Case B1 If kr−1 is to the right of r − 2 singletons k1, . . . , kr−2 followed by
Pℓ−(r−1) with size kr + 1, and it is not true that the elements of Pℓ−(r−1),
k1, . . ., kr−1 are in increasing order: k1 is larger than the largest element
of Pℓ−(r−1) and k1 < k2 < · · · < kr−1, then do a singleton skip: fix Pℓ and
next consider Pℓ−1, so in(P ) = in−1(P1/P2/ · · · /Pℓ−1)/Pℓ.

Case B2 If kr−1 is to the right of r − 2 singletons k1, . . . , kr−2 followed by
Pℓ−(r−1) with size kr + 1, the elements of Pℓ−(r−1), k1, . . ., kr−1 are in in-
creasing order, and Pℓ−(r−1) has size kr+1 which is not a top element of A∪
B, then make a (r− 1)-merge move: combine blocks Pℓ−(r−1), k1, . . . , kr−1,
so in(P ) = P1/P2/ · · · /Pℓ−(r−1)k1 · · · kr−1.

Case B3 If kr−1 is to the right of r − 2 singletons k1, . . . , kr−2 followed by
Pℓ−(r−1) with size kr + 1, the elements of Pℓ−(r−1), k1, . . ., kr−1 are in
increasing order, and Pℓ−(r−1) has size kr + 1 which is a top element of
A ∪ B, then make a r-freeze skip: remove Pℓ−(r−1), k1, . . . , kr−1 from the
partition, then proceed inductively, so we have
in(P ) = in−r+1−|Pℓ−(r−1)|(P1/P2/ · · · /Pℓ−r)/Pℓ−(r−1)/k1/ · · · /kr−1.

Case B4 If kr−1 is to the right of r − 2 singletons k1, . . . , kr−2 followed by
Pℓ−(r−1) with size kr, then do a singleton skip.

Case B5 If kr−1 is to the right of fewer than r − 2 singletons followed by a
non-singleton, do a singleton skip.

(2) Suppose that |Pℓ| > 1, with k1, . . . , kr−1 the largest r − 1 element of Pℓ.

(C) Suppose |Pℓ| is not a bottom element of R.

Case C1 If |Pℓ| = kr, then make a (r − 1)-split move: replace the block Pℓ

with r blocks, Pℓ − k1 − · · · − kr−1, k1, k2, . . ., kr−1, in that order, so
in(P ) = P1/P2/ · · · /Pℓ−1/Pℓ − k1 − · · · − kr−1/k1/ · · · /kr−1.

Case C2 If |Pℓ| = kr+1, then make a 1-split move: replace the block Pℓ with
two blocks, Pℓ−kr−1 and kr−1, in that order, so in(P ) = P1/P2/ · · · /Pℓ−1/Pℓ−
kr−1/kr−1.

Case D If |Pℓ| is a bottom element of R, then do a block skip.

As in the previous algorithm, few things are immediate. First, the map in is indeed
a map from Ppos

n,A,B ∪ Pneg
n,A,B to itself, as all block sizes of in(P ) are, by construction, in

A ∪B. Second, it preserves underlying permutations, as only merges and splits of blocks
occur.

4Note that |Pℓ−1|+ 1 ∈ A ∪B as we are odd ended
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We now check that it is an involution, proceeding again by induction on n, with base
cases n = 0, 1 trivial. We show that whichever case the partition P = P1/ · · · /Pℓ falls
into, in(in(P )) = P . Throughout let P ′ := in(P ).

Case A1 Here P ′ = in−1(P1/ · · · /Pℓ−1)/Pℓ. Since the order of the underlying permuta-
tion is preserved, the partition P ′ falls into Case A1, so

in(P
′) = in−1(in−1(P1/P2/ · · · /Pℓ−1))/Pℓ.

Since in−1 is an involution (by induction), in(P
′) = P .

Case A2 Here P ′ falls into Case C2, and evidently in(P
′) = P .

Case B1 Our goal here is that P ′ again must do a singleton skip, as then the result will
hold by induction; indeed, then,

in(P
′) = in−1(in−1(P1/P2/ · · · /Pℓ−1))/Pℓ.

Recall that the order of the underlying permutation does not change. First, suppose
that kr−2 > kr−1. Then the partition P ′ falls into Case A1, B1, B4, or B5 (as Pℓ is
a singleton, and Cases A2, B2, and B3 require kr−2 < kr−1) and so does a singleton
skip again.

If instead we have kr−2 < kr−1, then as P is in Case B1 the r elements given by the
largest element of Pℓ−(r−1), k1, . . ., kr−1 are not all in increasing order, so cannot
all be part of a single block of P ′. Therefore either P ′ is in Case B5 (if some of the
elements are in the same block in P ′) or Case B1 or B5 (if none of those elements
are in the same block in P ′). In all cases P ′ also does a singleton skip, so the result
holds by induction.

Case B2 Here P ′ falls into Case C1, and evidently in(P
′) = P .

Case B3 Here P ′ falls into Case B3 again, and by induction in(P
′) = P .

Case B4 Our goal is to show that we will again do a singleton skip in P ′. Here the
algorithm on P will proceed with B5 singleton skips until reaching the last singleton
k1, when it will either fall into Case A1 and continue on (if the singleton k1 is not
larger than the largest entry in Pℓ−(r−1)), or it will fall into Case A2 (otherwise).

In the former case, note first that P will fall into Case C1 when arriving at Pℓ−(r−1)

and produce r− 1 more singletons. Therefore the partition P ′ falls into Case B1 (as
it will end in r singletons that are not in order).

In the latter case, the partition P ′ has one fewer singleton to the left of kr−1 and so
P ′ falls into Case B5.

In all possibilities, P ′ also does a singleton skip, and so induction implies that
in(P

′) = P .
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Case B5 Again, our goal is to show that we will do a singleton skip in P ′. The partition
P ′ will also be in Case B5 unless the algorithm produced more singleton elements
in P ′ to the left of Pℓ, which means that P performed skips until reaching the first
non-singleton to the left of kr−1 and then performed either a 1-split (Case C2) or an
(r − 1)-split (Case C1).

If P fell into Case C2, then in particular the non-singleton in P is an odd block.
Therefore in P ′ we have r − 1 or fewer singletons followed by an even block. If in
P ′ we have exactly r− 1 singletons followed by an even block, the P ′ falls into Case
B4. If in P ′ we have fewer than r − 1 singletons followed by an even block, then P ′

falls into Case B5.

If instead P fell into Case C1, then the non-singleton in P is an even block, and in
P it did not perform Case A2 with the singleton to its right. This means that the
singleton to its right did a singleton skip in P (Case A1) before reaching Case C1 in
the non-singleton block, and so the entries of the non-singleton and the singleton to
its right must be out-of-order in the underlying permutation. Therefore the entries
of P ′ are also out of order, and so P ′ falls into Case B1.

In all cases the partition P ′ will perform a singleton skip, and so induction implies
that in(P

′) = P .

Case C1 Here P ′ falls into Case B2, and evidently in(P
′) = P .

Case C2 Here P ′ falls into Case A2, and evidently in(P
′) = P .

Case D Here P ′ falls into Case D again, and by induction in(P
′) = P .

In order for in to be sign-reversing, we will show that if in(P ) 6= P , then in(P ) and P
differ by one in the number of blocks with a size in B (those whose size is equivalent to 0
mod r). But this follows from the construction, since we either merge blocks of size 1 and
kr to a single block of size kr + 1, merge r − 1 blocks of size 1 and one of size kr + 1 to
a single block of size (k + 1)r, or we reverse those moves via splits. So if in(P ) 6= P , then
exactly one of P and in(P ) is in Ppos

n,A,B.
Finally, we show that if in P any block has size equivalent to 0 mod r then in(P ) 6= P .

In fact, as before, we will that if in(P ) = P , then all block sizes of P are 1 or a top
element or a bottom element of A∪B with particular allowable orderings, which leads to
our combinatorial interpretations. Notice that as A ∪ B is odd ended, it follows that all
top and bottom elements are in A. Furthermore, all blocks with size 1 are also in A.

Lemma 4.3. Let n ≥ 1. With the involution in defined above, if in(P ) = P , then all
block sizes of P are 1 or a top element or a bottom element.

Furthermore, the necessary and sufficient conditions on the order of the block sizes of
P are that, (i), the top elements that are not also bottom elements must be part of a freeze
skip r-tuple, and (ii), the bottom elements that are not also top elements must not have
r−1 singletons to the right (whose elements are collectively in increasing order) with none
of those singleton blocks in a freeze skip r-tuple.
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As we did following the statement of Lemma 3.3, we can understand condition (ii)
based on whether r is in A ∪B or not.

So suppose that we take a bottom element that is not also a top element. If any of the
r− 1 singletons to the right is part of an r-freeze skip, then it must be that r consecutive
singletons are frozen (whose elements are collectively in increasing order) and therefore
r /∈ A∪B. So if r ∈ A∪B, then (ii) simply says that the bottom element that is not also
a top element does not have r − 1 singletons to the right (whose elements are collectively
in increasing order). But if r /∈ A ∪B, then r consecutive singletons can be “frozen” and
so (ii) says that the bottom element that is not also a top element does not have exactly
jr+(r−1) singletons to the right (whose elements are collectively in increasing order), as
this would perform j consecutive r-freeze skips followed by an (r − 1)-merge on the last
r − 1 elements with the bottom element that is not also a top element.

To illustrate this, take for example r = 5 and A ∪ B = {1, 6, 10, 11} (and so A =
{1, 6, 11} and B = {10}, the block size 6 is a bottom element that is not a top element,
and r = 5 /∈ A ∪ B). Assuming all elements in the blocks are collectively in increasing
order:

• a block of size 6 with exactly r − 1 = 4 singletons to the right will perform an
(r − 1)-merge to create a block with size 10 (Case B2);

• a block with size 6 with exactly r+ r = 10 singletons to the right will freeze the first
5 singletons (Case B3), then freeze the next 5 singletons (Case B3), then skip the
block with size 6 (Case D); and

• a block with size 6 with exactly r + (r − 1) = 9 singletons to the right will freeze
the first 5 singletons (Case B3) and then perform an (r − 1)-merge on the last 4
singletons and the block with size 6 (Case B2).

Note that if in(P ) = P , then the first and third situations could not occur in P , while the
second is possible in P .

Proof of Lemma 4.3. We again proceed by induction on n, showing that if P has at least
one block size in B, then in(P ) 6= P . The base cases are trivial. For n ≥ 2 we consider an
ordered set partition of P = P1/ · · · /Pℓ that has at least one block size in B. We consider
the cases for P under this assumption, showing why each lead to in(P ) 6= P .

Case A1 By induction (we skip a block with size 1).

Case A2 Here in(P ) 6= P .

Case B1 By induction (we skip a block with size 1).

Case B2 Here in(P ) 6= P .

Case B3 By induction (we skip all blocks with sizes either 1 ∈ A or a top element of
A ∪B and so in A).

Case B4 By induction (we skip a block with size 1).
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Case B5 By induction (we skip a block with size 1).

Case C1 Here in(P ) 6= P .

Case C2 Here in(P ) 6= P .

Case D By induction (we skip a size that is a bottom element of A ∪B and is in A).

The second statement is clear from the algorithm as well, as it is describing the prop-
erties needed so that Cases B2 and C2 do not occur; the other moves and splits cannot
occur based on the block sizes all being in A. This finishes the proof.

4.3 General Stretched Combinatorial Interpretations

The combinatorial interpretations now follow exactly as in Section 3. We consider b = 1,
since the combinatorial interpretations for b > 1 simply involve blowing up the elements
to groups of size b. These generalizations are completely analogous to those in Section 3,
but we state them for completeness.

With the terminology from the proof and the characterization of the fixed points of in,
we have the following natural definition.

Definition 4.4. Suppose that A ⊆ {x ≥ 1 : x ≡ 1 mod r} and B ⊆ {x ≥ 1 : x ≡ 0
mod r}. Say that an ordered set partition of [n] is A,B, r-good if:

• all blocks are either size 1 or size that is an endpoint of the maximal intervals,

• writing the elements of a block in increasing order, within an increasing run in the
underlying permutation the following holds:

– all blocks with size equal to a top element that is not a bottom element is part
of a freeze skip r-tuple, and

– all blocks with size equal to a bottom element that are not also top elements do
not have r − 1 singletons immediately to the right with none of the singletons
in a freeze skip r-tuple.

Generalizing Corollary 3.6, we have the following.

Corollary 4.5. Suppose that A ⊆ {x ≥ 1 : x ≡ 1 mod r} and B ⊆ {x ≥ 1 : x ≡ 0
mod r} with A ∪B odd-ended and 1 ∈ A. Define (cn)n≥0 via

(

1−
∑

a∈A

xa

a!
+
∑

b∈B

xb

b!

)−1

=
∑

n≥0

cn
xn

n!
.

Then the values cn are all non-negative integers, and moreover have a natural combinatorial
interpretation as the number of A,B, r-good ordered set partitions of [n].

We extend the definitions of weight to the r-stretched case as well.
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Definition 4.6. Suppose that A ⊆ {x ≥ 1 : x ≡ 1 mod r} and B ⊆ {x ≥ 1 : x ≡ 0
mod r} with 1 ∈ A. Let ℓ ∈ [n]. The weight wℓ is defined as the number of ordered set
partitions of ℓ ordered elements so that:

• all blocks are either size 1 or size that is an endpoint of the maximal intervals,

• all blocks with size equal to a top element that is not a bottom element is part of a
freeze skip r-tuple, and

• all blocks with size equal to a bottom element that are not also top elements do not
have r−1 singletons immediately to the right with none of the singletons in a freeze
skip r-tuple.

Definition 4.7. For a permutation σ of [n], define the weight of σ, denoted wσ, as the
product of the weights of the lengths of all maximal increasing runs of σ.

Corollary 4.8. Suppose that A ⊆ {x ≥ 1 : x ≡ 1 mod r} and B ⊆ {x ≥ 1 : x ≡ 0
mod r} with A ∪B odd-ended and 1 ∈ A. Define (cn)n≥0 via

(

1−
∑

a∈A

xa

a!
+
∑

b∈B

xb

b!

)−1

=
∑

n≥0

cn
xn

n!
.

Then the values cn are all non-negative integers, and moreover have a natural combinatorial
interpretation as

cn =
∑

σ

wσ,

where the sum is over all permutations σ of [n].

4.4 Recovering Gessel’s Interpretation in the r-Stretched Case

Taking the first A ∪ B = {1, r, r + 1, . . . , (m − 1)r, (m − 1)r + 1}, the r-stretched version
of [2m − 1], we see that the fixed points are those with block sizes only given by 1 and
(m − 1)r + 1. The case with m = 1 is again trivial, and for m > 1, by Corollary 4.8 the
maximal increasing runs are made up of freeze skip r-tuples (with mr elements in total)
with a potential group of up to r − 1 singleton blocks to the left, and so if there are k
freeze skip r-tuples, there must be rmk + j elements in the maximal increasing run for
some 0 ≤ j ≤ r − 1, and so they have length kmr + j for some 0 ≤ j ≤ r − 1. This is
Gessel’s result [3, Proposition 2.4].

When A ∪ B = {1, r, r + 1, 2r, . . .}, we only have a single bottom element 1. By
Corollary 4.8, the maximal increasing runs are made up of up to r − 1 singletons, and so
cn counts the number of permutations of [n] whose maximal increasing runs have length at
most r− 1. As mentioned in the Introduction, this recovers a result of David and Barton
([1, pp. 156-157], see also for example [4]).
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5 General conditions for non-negativity

In this section, we consider the necessary and sufficient conditions for non-negativity
of GA,B(x) when A ⊆ O and B ⊆ E with 1 ∈ A. We prove a necessary condition
from Theorem 1.6 and then indicate how our proof technique of fixing the underlying
permutation is not able to prove Conjecture 1.7.

5.1 Proof of Theorem 1.6

Suppose that A ⊆ O and B ⊆ E with 1 ∈ A. First assume A ∪ B = [2m]. We will
consider the general case (where sizes at least 2m + 2 are also allowed in A ∪ B) in the
last paragraph of the proof.

We focus on the value c2m+2. Recall that the algorithm from the proof of Theorem
1.4 considers all ordered set partitions of [2m+ 2] so that the block sizes are at most 2m,
and so that the elements in each block are in increasing order and so have an associated
underlying permutation. From the algorithm, the term c2m+2 counts the ordered set
partitions of [2m + 2] that are fixed points of the involution, with the signs of each fixed
partition based on the sizes of the blocks in the partition. So we count the signed fixed
points of i2m+2. We note that the proof of Theorem 1.4 showed that all fixed points came
with a positive sign, but we are not odd-ended and so must consider the signs of the fixed
points.

Any block of size 2 through 2m, if considered by the algorithm (as in, it has not been
skipped in a freeze skip pair), will split off a singleton block in Case D, and so such a
ordered set partition will not be fixed by the algorithm. In particular, the fixed points of
the algorithm must start with a singleton block Pℓ.

Further, any block of size 1 will perform a non-skip move under the algorithm unless
either:

1. its entry in the underlying permutation is in increasing order with the entry to the
left, and the next block has size 2m (so those two blocks will be in a freeze skip
pair), or

2. its entry in the underlying permutation is not in increasing order with the entry to
the left (so the singleton block will be skipped).

We consider the possibilities separately.
If the entries of the singleton Pℓ and the block Pℓ−1 to its left are in order, then Pℓ−1

must be of size 2m, so Pℓ−2 = P1 is a singleton. The only restriction on the entries of the
permutation is that the last 2m + 1 entries — encompassing the blocks Pℓ−1 and Pℓ —
must be increasing, so there are exactly 2m + 2 such ordered partitions into blocks with
sizes 1, 2m, 1, with the last two blocks having entries in the underlying permutation in
increasing order.

If the entries of Pℓ and Pℓ−1 are not in increasing order, then by Case B the singleton
block Pℓ is skipped. Again, the next block Pℓ−1 will split unless it is also singleton. By
the same argument above, Pℓ−1 will do a freeze skip if its entries are in increasing order
with the entries of Pℓ−2 and Pℓ−2 has size 2m; the same count above gives 2m + 1 ways
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this can occur (note that the last two entries in the underlying permutation must not be
increasing, by assumption).

If instead the block Pℓ−1 has entries that are not in increasing order with those in Pℓ−2,
then Pℓ−1 is skipped. Now there are 2m elements remaining, and to be a fixed point of the
involution, all remaining blocks must do block skips. Therefore all blocks are singletons
whose entries are not in increasing order, and so P is partitioned into 2m + 2 singleton
blocks, and the underlying permutation is the decreasing permutation.

We now consider the signs associated with these fixed points. Those partitions with
a block with size 2m have a negative sign. The partition of all singletons has a positive
sign, and so c2m+2 = −(2m+ 2)− (2m+ 1) + 1 = −2(2m+ 1) < 0.

Lastly, suppose there are also blocks with size at least 2m+ 2. Since any blocks with
size 2m+2 count with a negative sign and and all blocks with size at least 2m+3 do not
alter the count for partitions of [2m+ 2], this shows that the coefficient c2m+2 is negative
in this case (with value unchanged if 2m+ 2 /∈ A ∪B, and value c2m+2 = −2(2m+ 1)− 1
if 2m+ 2 ∈ A ∪B).

5.2 Sufficient Condition Limitations via Combinatorial Algorithm

In this section we describe the limitations of our current proof technique in relation to
Conjecture 1.7.

Note that our algorithm fixes the underlying permutation. We will find a particular
permutation for a particular A ⊆ O and B ⊆ E so that the net count for this permutation
is negative, and so our method of finding non-negativity by proving it for each fixed
permutation (via a sign-reversing involution that only fixes elements that count positively)
cannot work.

Consider A ∪ B = {1, 4, 6, 8, 10 . . .} and n = 5, and fix the permutation 12345. Then
only blocks with size 1 and 4 can be used, and there is one way to use all singleton blocks,
namely 1/2/3/4/5, whereas there are two ways to use a block with size 4 on this fixed
permutation: 1/2345 and 1234/5. So the net count for this fixed permutation is −1. Any
sign-reversing involution that fixes the underlying permutation will have a fixed point that
counts negatively for this particular permutation.

We note that this does not imply that there are negative coefficients in the reciprocal
series, since other permutations of [5] have positive counts; it only shows that we can-
not produce a proof where the underlying permutations stay the same and we have an
involution leaving only positive blocks for each fixed permutation.

5.3 Sufficient Condition via Analytic Techniques

We next show analytically how Conjecture 1.7 can be reduced to specific sets A ∪ B for
each positive integer m. We use this to prove Conjecture 1.7 in the cases where m = 1
and m = 2.

To begin, we have the following general lemma.

Lemma 5.1. Suppose that f(x) and g(x) satisfy f(0) = 1 and g(0) = 0 and furthermore

suppose that the series for
1

f(x)
and the series for g(x) have all coefficients non-negative.

24



Then the coefficients of the series for
1

f(x)− g(x)
are also non-negative.

Proof. We compute

1

f(x)− g(x)
=

1

f(x)
·

1

1− g(x)/f(x)
=

(

1

f(x)

)

(

∞
∑

k=0

(

g(x) ·
1

f(x)

)k
)

,

and by assumption both
1

f(x)
and g(x) ·

1

f(x)
have all coefficients non-negative. This

completes the proof.

This leads to the following.

Corollary 5.2. Suppose that A ⊆ O and B ⊆ E with 1 ∈ A, and suppose that the smallest
positive number in {1, 2, 3, . . .} \ (A ∪B) is 2m.

If the series for
1

1 +
∑2m−1

k=1
(−1)kxk

k! +
∑∞

k=m+1
x2k

(2k)!

,

corresponding to coefficients in [2m − 1] ∪ {2m + 2, 2m + 4, . . .}, has all coefficients non-
negative, then the series for

1

1−
∑

a∈A
xa

a! +
∑

b∈B
xb

b!

has all coefficients non-negative.

Proof. For each positive m ≥ 1 let

fm(x) = 1 +
2m−1
∑

k=1

(−1)kxk

k!
+

∞
∑

k=m+1

x2k

(2k)!
.

By assumption, suppose also that
1

fm(x)
has all non-negative coefficients.

Consider now the arbitrary A∪B with 1 ∈ A and with 2m the smallest positive integer
missing from A∪B. Let C be the set of even numbers, strictly greater than 2m, that are
missing from B, together with the set of odd numbers, strictly greater than 2m, that are
in A. Then

1

1−
∑

a∈A
xa

a! +
∑

b∈B
xb

b!

=
1

fm(x)−
∑

c∈C
xc

c!

has all coefficients non-negative by Lemma 5.1.

So to prove Conjecture 1.7, by Corollary 5.2 it suffices to consider

A ∪B = {1, 2, . . . , 2m− 1, 2m+ 2, 2m+ 4, . . .}

for each positive integer m. This leads to the following proof of Conjecture 1.7 when
m = 1.
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Theorem 5.3. Let f(x) = 1−x+
∑

k even, k≥4

xk/k!. Then the reciprocal
1

f(x)
has a series

with all non-negative coefficients.

Proof. Let a > 0. We’ll show that there is a value for a so that f(x)g(x) = 1 − p(x),
where g(x) = 1 + ax + a2x2 + · · · and p(x) is a non-negative series with p(0) = 0. Then
the reciprocal 1/f(x) = g(x) · (1/(1− p(x))) is a product of two non-negative series and is
hence non-negative.

Let n be a positive integer. Then

[xn]f(x)g(x) = an − an−1 +
∑

k even, 4≤k≤n

an−k/k!

= an



1− 1/a+
∑

k even, 4≤k≤n

(1/a)k/k!





≤ anf(1/a).

If we find a > 0 so that f(1/a) < 0, then [xn]f(x)g(x) ≤ 0 for all n ≥ 1 as desired. But

f(x) =
ex + e−x

2
− x− x2/2 and f(2) < 0 so we may take a = 1/2.

With similar reasoning, we have a proof when m = 2.

Theorem 5.4. Let f(x) = 1−x+
x2

2!
−

x3

3!
+

∑

k even, k≥6

xk/k!. Then the reciprocal
1

f(x)

has a series with all non-negative coefficients.

Proof. Let f(x) = 1 − x +
x2

2!
−

x3

3!
+

∑

k even, k≥6

xk

k!
. We’ll again show that there is an

a > 0 so that f(x)g(x) = 1− p(x), where now g(x) = 1+x+
x2

2!
+

x3

3!
+ a4x4 + a5x5 + · · ·

and p(x) is a non-negative series with p(0) = 0, which as before will imply that
1

f(x)
has

a series with all non-negative coefficients. It will turn out that a = 1/2.
We compute [xn]f(x)g(x). Note that these series start as truncated versions of e−x

and ex through the degree 3 term, so clearly [x0]f(x)g(x) = 1 and [xn]f(x)g(x) = 0 for
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n = 1, 2, 3. Then

[

x4
]

f(x)g(x) = a4 −
1

3!
+

1

2! · 2!
−

1

3!
= a4 −

2

4!
[

x5
]

f(x)g(x) = a5 − a4 +
1

3!2!
−

1

2!3!
= a4(a− 1)

[

x6
]

f(x)g(x) = a6 − a5 +
a4

2!
−

1

3!3!
+

1

6!
[

x7
]

f(x)g(x) = a7 − a6 +
a5

2!
−

a4

3!
+

1

6!
[

x2n
]

f(x)g(x) ≤ a2n (f(1/a)) +
1

2!(2n − 2)!
+

1

(2n)!
(n ≥ 4)

[

x2n+1
]

f(x)g(x) ≤ a2n+1 (f(1/a)) +
1

3!(2n − 3)!
+

1

(2n − 1)!
(n ≥ 4).

Now, note f(x) = cosh(x)−x−
x3

3!
−
x4

4!
. Also, it can be checked that when a = 1/2 we

have that the n = 4 through n = 7 coefficients in the above computations are negative. For
that choice of a we have f(1/a) = f(2) = −0.2378043089... and so axf(1/a) ≤ ax · (−1/5).
Now

a8f(1/a) +
1

2!6!
+

1

8!
≤

(

1

2

)8

·

(

−1

5

)

+
4 · 7 + 1

8!
=

−3 · 3 · 7/2 + 29

8!
< 0

and

a9f(1/a) +
1

3!6!
+

1

8!
≤

(

1

2

)9

·

(

−1

5

)

+
56 + 6

3!8!
=

−3 · 3 · 7 · 3/2 + 62

3!8!
< 0.

For even values larger than 9, we inductively assume a2nf(1/a) +
1

2!(2n − 2)!
+

1

(2n)!
< 0

to show the result for a2n+2:

a2n+2f(1/a) +
1

2!(2n)!
+

1

(2n+ 2)!
≤

(

1

4

)(

a2nf(1/a) +
1

2!(2n − 2)!
+

1

(2n)!

)

< 0.

For odd values larger than 9, we also inductively have

a2n+3f(1/a)+
1

3!(2n − 1)!
+

1

(2n + 1)!
≤

(

1

4

)(

a2n+1f(1/a) +
1

2!(2n − 3)!
+

1

(2n− 1)!

)

< 0.

This completes the proof.

Unfortunately, this technique will not work for all values ofm, even if we allow ourselves
flexibility with the parameter a. Computations show that with f(x) = cosh(x)−x−x3/3!−
x5/5!− . . .− x2m−1/(2m− 1)!− x2m/(2m)!, with m = 5, and g(x) = 1 + x+ x2/2! + ...+
x2m−1/(2m− 1)! + a2mx2m/(1− ax), there is no choice of a for which f(x)g(x) = 1− p(x)
with p(0) = 0 and all coefficients of p(x) non-negative.

27



References

[1] F. N. David and D. E. Barton, Combinatorial Chance, Hafner Publishing Co., New
York, 1962.

[2] J. Engbers, D. Galvin, and C. Smyth, Restricted Stirling and Lah number matrices
and their inverses, J. Comb. Theory Ser. A 161 (2019), 271–298.

[3] I. Gessel, Reciprocals of exponential polynomials and permutation enumeration, Aus-
tralas. J. Combin. 74 (2019), 364–370.

[4] I. Gessel and Y. Zhuang, Counting permutations by alternating descents, Elec. J.
Combin. 21(4) (2014), #P4.23.

[5] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, published
electronically at http://oeis.org, accessed January 2023.

28

http://oeis.org

	1 Introduction and Statement of Results
	2 Proof Ideas
	3 Proof of Theorem 1.4 and Combinatorial Interpretations
	3.1 Proof of Theorem 1.4
	3.2 General Combinatorial Interpretations
	3.3 Recovering Gessel's Interpretation Involving Increasing Runs

	4 Proof of Theorem 1.5 and Combinatorial Interpretations
	4.1 Stretching by b
	4.2 Stretching by r
	4.3 General Stretched Combinatorial Interpretations
	4.4 Recovering Gessel's Interpretation in the r-Stretched Case

	5 General conditions for non-negativity
	5.1 Proof of Theorem 1.6
	5.2 Sufficient Condition Limitations via Combinatorial Algorithm
	5.3 Sufficient Condition via Analytic Techniques


