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Abstract

We study local Markov chains for sampling 3-colorings
of the discrete torus TL,d = {0, . . . , L − 1}d. We
show that there is a constant ρ ≈ .22 such that for
all even L ≥ 4 and d sufficiently large, certain local
Markov chains require exponential time to converge to
equilibrium. More precisely, if M is a Markov chain on
the set of proper 3-colorings of TL,d that updates the
color of at most ρLd vertices at each step and whose
stationary distribution is uniform, then the convergence
to stationarity of M is exponential in Ld−1. Our proof
is based on a conductance argument that builds on
sensitive new combinatorial enumeration techniques.

1 Introduction

Sampling and counting colorings of a graph are fun-
damental problems in computer science and discrete
mathematics. We consider the problem of sampling uni-
formly at random from the set Ck = Ck(G) of proper
k-colorings of a graph G = (V, E). A proper k-coloring
χ is a labeling χ : V → k such that all neighboring
vertices have different colors. This sampling problem is
also fundamental in statistical physics and corresponds
to generating configurations from the Gibbs distribu-
tion of the zero-temperature antiferromagnetic Potts
model [20]. From the physics perspective, the under-
lying graph is typically taken to be the cubic lattice Zd

and sampling and counting reveal underlying thermody-
namic properties of the corresponding physical system.

Much focus has gone towards solving the sampling
problem using rapidly mixing Markov chains. The
idea is to design a Markov chain whose stationary
distribution is uniform over the set of proper colorings.
Then, starting at an arbitrary coloring and simulating
a random walk according to this chain for a sufficient
number of steps, we get a sample from close to the
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desired distribution. The number of steps required of
this walk is referred to as the mixing time (see, e.g.,
[17]). The chain is called rapidly mixing if the mixing
time is polynomial in n = |V | (so it converges quickly
to stationarity); it is torpidly mixing if its mixing time
is super-polynomial in n (so it converges slowly). There
has been a long history of studying mixing times of
various chains in the context of colorings (see, e.g.,
[1, 6, 10, 11, 12, 15]).

A particular focus of this study has been on Glauber
dynamics. For proper k-colorings this is any single-site
update Markov chain that connects two colorings only
if they differ on at most a single vertex. The Metropolis
chain Mk on state space Ck has transition probabilities
Pk(χ1, χ2), χ1, χ2 ∈ Ck, given by

Pk(χ1, χ2) =





0, if |{v ∈ V : χ1(v) 6= χ2(v)}| > 1;

1
k|V | , if |{v ∈ V : χ1(v) 6= χ2(v)}| = 1;

1− ∑
χ1 6=χ′2∈Ck

Pk(χ1, χ
′
2),

if χ1 = χ2.

We may think of Mk dynamically as follows. From a
k-coloring χ, choose a vertex v uniformly from V and
a color j uniformly from {0, . . . , k − 1}. Then recolor v
with color j if this is a proper k-coloring; otherwise stay
at χ.

When Mk is ergodic, its stationary distribution πk

is uniform over proper k-colorings. A series of recent
papers have shown that Mk is rapidly mixing provided
the number of colors is sufficiently large compared to
the maximum degree (see [6] and the references therein).
Substantially less is known when the number of colors
is small. In fact, for k small it is NP-complete to decide
whether a graph admits even one k-coloring.

In this paper we focus on the mixing rate of Mk

on rectangular regions of the cubic lattice Zd. Observe
that the lattice is bipartite, so it always admits a k-
coloring for any k ≥ 2. It is also known that Glauber
dynamics connects the state space of k-colorings on any
such lattice region [15]. In Z2 much is known about



the mixing rate of Mk. Luby et al. [15] showed that
Glauber dynamics for sampling 3-colorings is rapidly
mixing on any finite, simply-connected subregion of Z2

when the colors on the boundary of the region are
fixed. Goldberg et al. [10] subsequently showed that
the chain remains fast on rectangular regions without
this boundary restriction. Substantially more is known
when there are many colors: Jerrum [12] showed that
Glauber dynamics is rapidly mixing on any graph
satisfying k ≥ 2∆, where k is the number of colors
and ∆ is the maximum degree, thus showing Glauber
dynamics is fast on Z2 when k ≥ 8. It has since been
shown that it is fast for k ≥ 6 [1, 3]. Surprisingly the
efficiency remains unresolved for k = 4 or 5.

In higher dimensions much less is known when k is
small. Physicists have performed extensive numerical
experiments [5, 19] suggesting that Glauber dynamics
on 3-colorings is torpidly mixing when the dimension
of the cubic lattice is large enough. We prove this
conjecture for the first time here by studying the
mixing time of the chain on cubic lattices with periodic
boundary conditions.

1.1 Results Our focus in this paper is sampling 3-
colorings of the even discrete torus TL,d. This is the
graph on vertex set {0, . . . , L− 1}d (with L even) with
edge set consisting of those pairs of vertices that differ
on exactly one coordinate and differ by 1 (mod L) on
that coordinate. For a Markov chain M on the 3-
colorings of TL,d we denote by τM the mixing time of
the chain; this will be formally defined in Section 2. Our
main theorem is the following.

theorem 1.1. There is a constant d0 > 0 for which
the following holds. For d ≥ d0 and L ≥ 4 even, the
Glauber dynamics chain M3 on C3(TL,d) satisfies

τM3 ≥ exp
{

Ld−1

d4 log2 L

}
.

Our techniques actually apply to a more general
class of chains. A Markov chain M on state space C3

is ρ-local if, in each step of the chain, at most ρ|V |
vertices have their color changed; that is, if

PM(χ1, χ2) 6= 0

implies

|{v ∈ V : χ1(v) 6= χ2(v)}| ≤ ρ|V |.

These types of chains were introduced in [4], where the
terminology ρ|V |-cautious was employed. We prove the
following, which easily implies Theorem 1.1.

theorem 1.2. Fix ρ > 0 satisfying H(ρ) + ρ < 1.
There is a constant d0 = d0(ρ) > 0 for which the
following holds. For d ≥ d0 and L ≥ 4 even, if M is an
ergodic ρ-local Markov chain on C3(TL,d) with uniform
stationary distribution then

τM ≥ exp
{

Ld−1

d4 log2 L

}
.

Here H(x) = −x log x − (1 − x) log(1 − x) is the usual
binary entropy function. Note that all ρ ≤ .22 satisfy
H(ρ) + ρ < 1.

1.2 Techniques We show slow mixing via a conduc-
tance argument by identifying a “bad cut” in the state
space requiring exponential time to cross. Intuitively, in
sufficiently high dimension, the set of 3-colorings of the
lattice is believed to naturally partition into 6 classes:
each class is identified by a predominance of one (of
3) colors on one of the two (even or odd) sublattices.
This characterization was recently rigorously verified on
the infinite lattice, thereby establishing the existence of
6 distinct “maximal entropy Gibbs states” [9]. That
work builds heavily on technical machinery introduced
by Galvin and Kahn [8] showing that independent sets
partition similarly in sufficiently high dimensions in that
they lie primarily on the even or odd sublattices. Specif-
ically, write E andO for the sets of even and odd vertices
of Zd (defined in the obvious way) and set ΛL = [−L, L]d

and ∂ΛL = [−L,L]d \ [−(L − 1), L − 1]d. For λ > 0,
choose I from I(ΛL) (the set of independent sets of the
box) with Pr(I = I) ∝ λ|I|. Galvin and Kahn showed
that for λ > Cd−1/4 log3/4 d (for a large constant C)
and fixed v ∈ ΛL ∩ E

lim
L→∞

P(v ∈ I | I ⊇ ∂ΛL ∩ E)

> lim
L→∞

P (v ∈ I | I ⊇ ∂ΛL ∩ O) .

In other words, the influence of the boundary on the
center of a large box persists as the boundary recedes.

Notice that neither of the results of [8] or [9] es-
tablishing the presence of multiple Gibbs states directly
implies anything about the behavior of Markov chains
on finite lattice regions. However, they do suggest that
in the finite setting, typical configurations fall into the
distinct classes described in stationarity and that it will
be unlikely to move between these classes; the remain-
ing configurations are expected to have negligible weight
for large lattice regions, even when they are finite.

Galvin [7] extended the results of [8], showing that
in sufficiently high dimension, Glauber dynamics on in-
dependent sets mixes slowly in rectangular regions of
Zd with periodic boundary conditions. Similar results



were known previously about independent sets; how-
ever, one significant new contribution of [7] was showing
that as d increases, the critical λ above which Glauber
dynamics mixes slowly tends to 0. In particular, there
is some dimension d0 such that for all d ≥ d0, Glauber
dynamics will be slow on Zd when λ = 1. This turns
out to be the crucial new ingredient allowing us to rig-
orously verify slow mixing for sampling 3-colorings in
high dimensions, as there turns out to be a close con-
nection between the independent set model at λ = 1 and
the 3-coloring model. Note that unlike most statistical
physics models, the 3-coloring problem does not have a
parameter λ that can be tweaked to establish desired
bounds; this makes the proofs here significantly more
delicate than the usual slow mixing arguments. Section
3.1 provides a more detailed discussion of the elements
of the proof and of some of the difficulties inherent to
the sampling problem under discussion.

2 Partitioning the state space

We begin by formalizing some definitions. Given a
Markov chain M on state space Ω with uniform sta-
tionary distribution denoted by π, let P t(X, ·) be the
distribution of the chain at time t given that it started
in state X. The mixing time τM of M is defined to be

τM = min
{

t0 : ||P t, π||tv ≤
1
e

∀t > t0

}

where

||P t, π||tv = max
X∈Ω

1
2

∑

Y ∈Ω

|P t(X, Y )− π(Y )|,

is the total variation distance.
We prove Theorem 1.2 via a well-known conduc-

tance argument [13, 14, 18], using a form of the argu-
ment derived in [4]. As above, let M be an ergodic
Markov chain on state space Ω with transition proba-
bilities P and stationary distribution π. Let A ⊆ Ω
and M ⊆ Ω \ A satisfy π(A) ≤ 1/2 and ω1 ∈ A,ω2 ∈
Ω \ (A ∪M) ⇒ P (ω1, ω2) = 0. Then from [4] we have

(2.1) τM ≥ π(A)
8π(M)

.

Let us return to the setup of Theorem 1.2. For even
L, TL,d is bipartite with partition classes E (consisting
of those vertices the sum of whose coordinates is even)
and O. To show torpid mixing, it is sufficient to identify
a single bad cut. We concentrate on the vertices in
each 3-coloring that are colored with the first color,
0. The objective of Theorem 1.2 will be to verify that
most 3-colorings have an imbalance whereby the vertices
colored 0 lie predominantly on E or O, and those that

are roughly balanced on the two sublattices are highly
unlikely in stationarity. This is sufficient to show that
the conductance is small.

Accordingly let us define the set of “balanced” 3-
colorings by

Cb,ρ
3 = {χ ∈ C3 :

∣∣|χ−1(0) ∩ E|−|χ−1(0) ∩ O|∣∣ ≤ ρLd/2}
and likewise let

CE,ρ
3 = {χ ∈ C3 : |χ−1(0) ∩ E| > |χ−1(0) ∩ O|+ ρLd/2}.

By symmetry, π3(CE,ρ
3 ) ≤ 1/2. Notice that since M

updates at most ρLd vertices in each step, we have
that if χ1 ∈ CE,ρ

3 and χ2 ∈ C3 \ (CE,ρ
3 ∪ Cb,ρ

3 ) then
PM(χ1, χ2) = 0. Therefore, by (2.1),

τM ≥ π3(CE,ρ
3 )

8π3(Cb,ρ
3 )

≥ 1− π3(CE,ρ
3 )

16π3(Cb,ρ
3 )

,

and so Theorem 1.2 follows from the following critical
theorem.

theorem 2.1. Fix ρ > 0 satisfying H(ρ) + ρ < 1.
There is a constant d0 = d0(ρ) > 0 for which the
following holds. For d ≥ d0 and L ≥ 4 even,

π3(Cb,ρ
3 ) ≤ exp

{ −2Ld−1

d4 log2 L

}
.

3 Proof of Theorem 2.1

3.1 Setup and overview For a generic χ ∈ Cb,ρ
3

there are regions of TL,d consisting predominantly of
even vertices colored 0 together with their neighbors,
and regions consisting of odd vertices colored 0 together
with their neighbors. These regions are separated by
two-layer “0-free” moats or cutsets. In Section 3.2 we
describe a procedure that selects a particular collection
of these cutsets. Our main technical result, Lemma
3.1, asserts that for each specification of cutset sizes
c1, . . . , c` and vertices v1, . . . , v`, the probability that a
coloring has among its associated cutsets a collection
γ1, . . . , γ` with |γi| = ci and with vi surrounded by γi is
exponentially small in the sum of the ci’s. This lemma
is presented in Section 3.3 and Theorem 2.1 is derived
from it in Section 3.4.

The main thrust of [9] is the proof of a result that
is essentially (but not quite) the case ` = 1 of Lemma
3.1. One difficulty we have to overcome in moving
from a Gibbs measure argument to a torpid mixing
argument is that of going from bounding the probability
of a configuration having a single cutset to bounding
the probability of it having an ensemble of cutsets.
Another difficulty is that the cutsets we consider in these
ensembles can be topologically more complex than the



connected cutsets that are considered in [9]. In part,
both of these difficulties are dealt with by the machinery
developed in [7].

We use a “Peierl’s argument” to prove Lemma 3.1.
By carefully modifying each χ ∈ Cb,ρ

3 inside its cutsets,
we can exploit the fact that the cutsets are 0-free to
map χ to a set ϕ(χ) of many different χ′ ∈ C3. If the
ϕ(χ)’s were disjoint for distinct χ’s, we would essentially
be done, having shown that there are many more 3-
colorings in total than 3-colorings in Cb,ρ

3 . To control the
possible overlap, we define a flow ν : Cb,ρ

3 × C3 → [0,∞)
supported on pairs (χ, χ′) with χ′ ∈ ϕ(χ) in such a way
that the flow out of each χ ∈ Cb,ρ

3 is 1. Any uniform
bound we can obtain on the flow into elements of C3

is then easily seen to be a bound on π3(Cb,ρ
3 ). We

define the flow via a notion of approximation modified
from [8]. To each cutset γ we associate a set A(γ)
that approximates the interior of γ in a precise sense,
in such a way that as we run over all possible γ, the
total number of approximate sets used is small. Then
for each χ′ ∈ C3 and each collection of approximations
A1, . . . , A`, we consider the set of those χ ∈ Cb,ρ

3

with χ′ ∈ ϕ(χ) and with Ai the approximation to γi.
We define the flow so that if this set is large, then
ν(χ, χ′) is small for each χ in the set. In this way we
control the flow into χ′ corresponding to each collection
of approximations A1, . . . , A`; since the total number
of approximations is small, we control the total flow
into χ′. In the language of statistical physics, this
approximation scheme is a course-graining argument.
The details appear in Section 4.

The main results of [7] and [8] are proved along
similar lines to those described above. One of the dif-
ficulties we encounter in moving from these arguments
on independent sets to arguments on colorings is that of
finding an analogous way of modifying a coloring inside
a cutset in order to exploit the fact that it is 0-free. The
beginning of Section 4 (in particular Claims 4.1 and 4.2)
describes an appropriate modification that has all the
properties we desire.

3.2 Cutsets We describe a way of associating with
each χ ∈ Cb,ρ

3 a collection of minimal edge cutsets,
following the approaches of [2] and [7]. First we need a
little notation.

Write V for the vertex set of TL,d and E for its
edge set. For X ⊆ V , write ∇(X) for the set of edges
in E that have one end in X and one end outside X;
X for V \ X; ∂intX for the set of vertices in X that
are adjacent to something outside X; ∂extX for the set
of vertices outside X that are adjacent to something
in X; X+ for X ∪ ∂extX; XE for X ∩ E and XO for
X ∩O. Further, for x ∈ V set ∂x = ∂ext{x}. We abuse

notation slightly, identifying sets of vertices of V and
the subgraphs they induce.

For each χ ∈ Cb,ρ
3 set I = I(χ) = χ−1(0). Note

that I(χ) is an independent set (a set of vertices no
two of which are adjacent). For each component R
of (IE)+ or (IO)+ and each component C of R, set
γ = γRC(I) = ∇(C) and W = WRC(I) = C. Evidently
C is connected, and W consists of R, which is connected,
together with a number of other components of R, each
of which is connected and joined to R, so W is connected
also. It follows that γ is a minimal edge-cutset in TL,d.
Say that γ is even if R is a component of (IE)+ and
odd otherwise. Define int γ, the interior of γ, to be the
smaller of C, W (if |W | = |C|, take int γ = W ).

The cutsets γ associated to χ depend only on the
independent set I(χ), and coincide exactly with the
cutsets associated to an independent set in [7]. We
may therefore apply the machinery developed in [7]
for independent set cutsets in the present setting. In
particular, from [7, Lemmas 3.1 and 3.2] we know that
for each χ ∈ C3 there is a collection of associated cutsets
Γ(I) such that either

(3.2)
for all γ, γ′ ∈ Γ(I),

γ, γ′ are even with int γ ∩ int γ′ = ∅,
and IE ⊆ ∪γ int γ,

or we have the analogue of (3.2) with even replaced by
odd. Set Ceven

3 = {χ ∈ C3 : χ satisfies (3.2)}. From
here on whenever χ ∈ Ceven

3 is given we assume that
I is its associated independent set and that Γ(I) is a
particular collection of cutsets associated with χ and
satisfying (3.2). Numerous properties of γ ∈ Γ(I) are
established in [7, Lemmas 3.3 and 3.4]. We list some
here that will be of use in the sequel. That the cutsets
are indeed 0-free regions is established by (3.4).

(3.3) ∂intW ⊆ O and ∂extW ⊆ E ;

(3.4) ∂intW ∩ I = ∅ and ∂extW ∩ I = ∅;

(3.5) WO = ∂extW
E and W E =

{
y ∈ E : ∂y ⊆ WO}

;

(3.6) for large enough d, |γ| ≥ max{|W |1−1/d, d1.9}.

3.3 The main lemma For c ∈ N and v ∈ V set

W(c, v) =
{

γ :
γ ∈ Γ(I) for some χ ∈ Ceven

3

with |γ| = c, v ∈ W E

}

and set W = ∪c,vW(c, v). A profile of a collection
{γ1, . . . , γ`} ⊆ W is a vector p = (c1, v1, . . . , c`, v`) with
γi ∈ W(ci, vi) for all i. Given a profile vector p set

C3(p) =
{

χ ∈ Ceven
3 :

Γ(I) contains a subset
with profile p

}
.



Our main lemma (c.f. [7, Lemma 3.5]) is the following.

Lemma 3.1. There are constants c, d0 > 0 such that the
following holds. For all even L ≥ 4, d ≥ d0 and profile
vector p,

(3.7) π3(C3(p)) ≤ exp

{
−c

∑`
i=1 ci

d

}
.

We will derive Theorem 2.1 from Lemma 3.1 in
Section 3.4 before proving the lemma in Section 4. From
here on we assume that the conditions of Theorem 2.1
and Lemma 3.1 are satisfied (with d0 sufficiently large
to support our assertions).

3.4 Proof of Theorem 2.1 assuming the main
lemma We begin with an easy count that dispenses
with colorings where |I(χ)| is small. Set

Csmall
3 =

{
χ ∈ Cb,ρ

3 : min{|IE |, |IO|} ≤ Ld/4d1/2
}

.

Lemma 3.2. π3(Csmall
3 ) ≤ exp

{−Ω(Ld)
}
.

Proof: For any A ⊆ E and B ⊆ O, let comp(A,B) be
the number of components in V \ (A∪B ∪ ∂?A∪ ∂?B),
where for T ⊆ E (or O),

∂?T = {x ∈ ∂extT : ∂x ⊆ T} (= {x ∈ V : ∂x ⊆ T}).

We begin by noting that by E-O symmetry

(3.8) |Csmall
3 | ≤ 2

∑
2|∂

?A|+|∂?B|+comp(A,B),

where the sum is over all pairs A ⊆ E , B ⊆ O with no
edges between A and B and satisfying |A| ≤ Ld/4d1/2

and |B| ≤ (ρ + 1/2d1/2)Ld/2. Indeed, once we have
specified that the set of vertices colored 0 is A ∪ B,
we have a free choice between 1 and 2 for the color
at x ∈ ∂?A ∪ ∂?B, and we also have a free choice
between the two possible colorings of each component
of V \ (A ∪B ∪ ∂?A ∪ ∂?B).

A key observation is the following. For A and B
contributing to the sum in (3.8),

(3.9) comp(A,B) ≤ Ld/2d.

To see this, let C be a component of V \ (A ∪ B). If
C = {v} consists of a single vertex, then (depending on
the parity of v) we have either ∂v ⊆ A or ∂v ⊆ B and
so v ∈ ∂?A ∪ ∂?B. Otherwise, let vw be an edge of C
with v ∈ E (and so w ∈ O). If v has k edges to B and
u has ` to A, then (since there are no edges from A to
B) we have (k − 1) + (` − 1) ≤ 2d − 2 or k + ` ≤ 2d.
(Here we are using that in TL,d, if uv ∈ E then there
is a matching between all but one of the neighbors of u

and v.) Since v has 2d − 1 − k edges to O \ (B ∪ {w})
and w has 2d−1− ` edges to E \ (A∪{v}) we have that
|C| = 4d− (k + `) ≥ 2d. From this, (3.9) follows.

Inserting (3.9) into (3.8) and bounding |∂?A| and
|∂?B| by the maximum values of |A| and |B| (valid since
T ⊆ E (or O) satisfies |T | ≤ |∂extT |, so |∂?T | ≤ |T |) and
with the remaining inequalities justified below, we have

|Csmall
3 | ≤ 2

Ld

2

�
ρ+ 1

d1/2 + 1
d

�
·

∑

i≤Ld/4d1/2

(
Ld/2

i

)

·
∑

j≤(ρ+1/2d1/2)Ld/2

(
Ld/2

j

)

≤ 2
Ld

2

�
ρ+ 1

d1/2 + 1
d +H

�
1

2d1/2

�
+H

�
ρ+ 1

2d1/2

��
(3.10)

≤ 2
Ld

2 (1−Ω(1))(3.11)

for sufficiently large d = d(ρ). In (3.10) we use the
Chernoff bound

∑[βM ]
i=0

(
M
i

) ≤ 2H(β)M for β ≤ 1
2 ; in

(3.11) we use H(ρ) + ρ < 1. Using 2Ld/2 ≤ |C3|, the
lemma follows. ¤

We now consider

Clarge,even
3 := (Cb,ρ

3 \ Csmall
3 ) ∩ Ceven

3 .

By Lemma 3.2 and E-O symmetry, Theorem 2.1 reduces
to bounding (say)

(3.12) π3(Clarge,even
3 ) ≤ exp

{
− 3Ld−1

d4 log2 L

}
.

Let Clarge,even,nt
3 be the set of χ ∈ Clarge,even

3

such that there is a γ ∈ Γ(I) with |γ| ≥ Ld−1 (we
think of such cutsets as being topologically non-trivial
(“nt”); see [7] for an explanation of this) and also let
Clarge,even,triv
3 = Clarge,even

3 \ Clarge,even,nt
3 . We assert

that

(3.13) π3(Clarge,even,nt
3 ) ≤ exp

{
−Ω

(
Ld−1

d

)}

and

(3.14) π3(Clarge,even,triv
3 ) ≤ exp

{
− 4Ld−1

d4 log2 L

}
;

this gives (3.12) and so completes the proof of Theorem
2.1. Both (3.13) and (3.14) are corollaries of Lemma
3.1, and the steps are identical to those that are used to
bound the measures of “Inon−trivial

large,even ” and “Itrivial
large,even”

in [7, Section 3.3].
With the sum below running over all vectors p of

the form (c, v) with v ∈ V and c ≥ Ld−1, and with the



inequalities justified below, we have

π3(Clarge,even,nt
3 ) ≤

∑
p

π3(C3(p))

≤ L2d exp
{
−Ω

(
Ld−1

d

)}

≤ exp
{
−Ω

(
Ld−1

d

)}
,

(3.15)

giving (3.13). We use Lemma 3.1 in (3.15). The factor
of L2d is for the choices of c and v.

The verification of (3.14) involves finding an i ∈
[Ω(log d), O(d log L)] and a set Γi(I) ⊆ Γ(I) of cutsets
with the properties that |Γi(I)| ≈ Ld/2i, |γ| ≈ 2i for
each γ ∈ Γi(I) and

∑
γ∈Γi(I) |γ| ≈ Ld−1. The measure

of Clarge,even,triv
3 is then at most the product of a term

that is exponentially small in Ld−1 (from Lemma 3.1),
a term corresponding to the choice of a fixed vertex in
each of the interiors, and a term corresponding to the
choice of the collection of lengths. The second term will
be negligible because Γi(I) is small and the third will
be negligible because all γ ∈ Γi(I) have similar lengths.

More precisely, for χ ∈ Clarge,even,triv
3 and γ ∈ Γ(I)

we have |γ| ≥ |int γ|1−1/d (by (3.6)) and so
∑

γ∈Γ(I)

|γ|d/(d−1) ≥
∑

γ∈Γ(I)

|int γ| ≥ |IE | ≥ Ld/4d1/2.

The second inequality is from (3.2) and the third follows
since χ 6∈ Csmall

3 .
Set Γi(I) = {γ ∈ Γ(I) : 2i−1 ≤ |γ| < 2i}. Note

that Γi(I) is empty for 2i < d1.9 (again by (3.6)) and
for 2i−1 > Ld−1 so we may assume that

(3.16) 1.9 log d ≤ i ≤ (d− 1) log L + 1.

Since
∑∞

m=1 1/m2 = π2/6, there is an i such that

(3.17)
∑

γ∈Γi(I)

|γ| d
d−1 ≥ Ω

(
Ld

d1/2i2

)
.

Choose the smallest such i set ` = |Γi(I)|. We have∑
γ∈Γi(I) |γ| ≥ Ω(`2i) (this follows from the fact that

each γ ∈ Γi(I) satisfies |γ| ≥ 2i−1) and

(3.18) O

(
dLd

2i

)
≥ ` ≥ Ω

(
Ld

2
id

d−1 i2d1/2

)
.

The first inequality follows from that fact that
∑

γ |γ| ≤
dLd = |E|; the second follows from (3.17) and the fact
that each γ has |γ|d/(d−1) ≤ 2di/(d−1). We therefore
have χ ∈ C3(p) for some p = (c1, v1, . . . , c`, v`) with `
satisfying (3.18), with

(3.19)
∑̀

j=1

cj ≥ O(`2i),

with

(3.20) cj ≤ 2i

for each j and with i satisfying (3.16). With the sum
below running over all profile vectors p satisfying (3.16),
(3.18), (3.19) and (3.20) we have

π3(Clarge,even,triv
3 ) ≤

∑
p

π3(C3(p)).(3.21)

The right-hand side of (3.21) is, by Lemma 3.1, at most

d log L max
i satisfying (3.16)

2`i

(
Ld

`

)
exp

{
−Ω

(
`2i

d

)}
.

The factor of d log L is an upper bound on the number of
choices for i; the factor of 2`i is for the choice of the cj ’s;
and the factor

(
Ld

`

)
is for the choice of the ` (distinct)

vj ’s. By (3.16) and the second inequality in (3.18) we
have (for d sufficiently large)

2`i

(
Ld

`

)
≤ 2`i

(
Ld

`

)`

≤ 2`i
(
O

(
2

id
d−1 i2d1/2

))`

≤ 24`i

= exp
{

o

(
2i

d

)}
,

so that in fact the right-hand side of (3.21) is at most

d log L max
i

exp
{
−Ω

(
2i`

d

)}
.

Taking ` as small as possible we see that this is at most

d log L max
i

exp
{
−Ω

(
2iLd

d2
id

d−1 i2d1/2

)}

and taking i as large as possible we see that this is at
most exp{−4Ld−1/d4 log2 L}. Putting these observa-
tion together we obtain (3.14).

4 Proof of Lemma 3.1

Much of what follows is modified from [7] and [9]. Our
strategy is as follows. Let p = (c1, v1, . . . , c`, v`) be
given. Set p′ = (c2, v2, . . . , c`, v`). We will show

(4.22)
π3(C3(p))
π3(C3(p′))

≤ exp
{
−Ω

(c1

d

)}

from which the lemma follows by a telescoping product.
To obtain (4.22) we define a one-to-many map ϕ from



C3(p) to C3(p′). We then define a flow ν : C3(p) ×
C3(p′) → [0,∞) supported on pairs (χ, χ′) with χ′ ∈
ϕ(χ) satisfying

(4.23) ∀χ ∈ C3(p),
∑

χ′∈ϕ(χ)

ν(χ, χ′) = 1

and
(4.24)
∀χ′ ∈ C3(p′),

∑

χ∈ϕ−1(χ′)

ν(χ, χ′) ≤ exp
{
−Ω

(c1

d

)}
.

This easily gives (4.22).
For each s ∈ {±1, . . . ,±d}, define σs, the shift in

direction s, by σs(x) = x + es, where es is the sth
standard basis vector if s > 0 and es = −e−s if s < 0.
For X ⊆ V write σs(X) for {σs(x) : x ∈ X}. For γ ∈ W
set W s = {x ∈ ∂intW : σ−s(x) 6∈ W}.

Let χ ∈ C3(p) be given. Arbitrarily pick γ ∈
Γ(I) ∩ W(c1, v1) and set W = int γ. Write f for the
map from {0, 1, 2} to {0, 1, 2} that sends 0 to 0 and
transposes 1 and 2. For each s ∈ {±1, . . . ,±d} and
S ⊆ W define the function χs

S : V → {0, 1, 2} by

χs
S(v) =





0 if v ∈ S
χ(v) if v ∈ (W s \ S) ∪ (V \W )
f(χ(σ−s(v))) if v ∈ W \W s

and set ϕs(χ) = {χs
S : S ⊆ W s}.

Claim 4.1. ϕs(χ) ⊆ C3(p′).

Proof: An easy case analysis verifies ϕs(χ) ⊆ C3.
We begin with the observation that the graph ∂intW ∪
∂extW is bipartite with bipartition (∂intW,∂extW ).
This follows from (3.3). By (3.4), I∩(∂intW ∪∂extW ) =
∅ and so for each component U of ∂intW ∪ ∂extW , χ is
constant on U ∩∂intW and on U ∩∂extW and in neither
case does it take on the value 0.

Fix S ⊆ W s. We show that if {u, v} is an edge of
TL,d then χs

S(u) 6= χs
S(v). We consider five cases.

If u, v 6∈ W then χs
S(u) = χ(u) and χs

S(v) = χ(v).
But χ(u) 6= χ(v), so χs

S(u) 6= χs
S(v) in this case.

If u ∈ W and v 6∈ W then χs
S(v) = χ(v) and

χs
S(u) ∈ {0, χ(u)} (we will justify this in a moment).

Since v ∈ ∂extW we have χ(v) 6= 0 and we cannot ever
have χ(v) = χ(u), so χs

S(u) 6= χs
S(v) in this case. To see

that χs
S(u) ∈ {0, χ(u)}, we consider subcases. If u ∈ S

then χs
S(u) = 0. If u ∈ W s \ S then χs

S(u) = χ(u).
Finally, if u ∈ W \ W s then χs

S(u) = f(χ(σ−s(u)));
and f(χ(σ−s(u))) is either 0 or χ(u) depending on
whether χ(σ−s(u)) equals 0 or χ(v) (χ(σ−s(u)) cannot
equal χ(u)).

If u, v ∈ W \ W s then χs
S(u) = f(χ(σ−s(u))) and

χs
S(v) = f(χ(σ−s(v))). Since f is a bijection and

χ(σ−s(u)) 6= χ(σ−s(v)) we have χs
S(u) 6= χs

S(v) in this
case.

If u ∈ W \ W s and v ∈ W s \ S then χs
S(u) ∈

{0, χ(u)} (as in the second case above) and χs
S(v) =

χ(v). Since χ(v) 6= 0, we have χs
S(u) 6= χs

S(v).
Noting that it is not possible to have both u, v ∈

W s, we finally treat the case where u ∈ W \ W s and
v ∈ S. In this case χs

S(v) = χ(v) = 0. Suppose (for a
contradiction) that χs

S(u) = 0. This can only happen if
χ(σ−s(u)) = 0. If σ−s(u) = v, we have a contradiction
immediately. Otherwise, we have σ−s(v) 6∈ W and
so (since σ−s(u)σ−s(v) ∈ E) σ−s(u) ∈ ∂intW , also a
contradiction.

This verifies ϕs(χ) ⊆ C3. Because int γ is disjoint
from the interiors of the remaining cutsets in Γ(I) and
the operation that creates the elements of ϕs(χ) only
modifies χ inside W it follows that ϕs(χ) ⊆ C3(p′). ¤

Claim 4.2. Given χ′ ∈ ϕs(χ), χ can be uniquely
reconstructed from W and s.

Proof: Following [9], we may reconstruct χ as follows.

χ(v) =
{

χ′(v) if v ∈ V \W
f(χ′(σs(v))) if v ∈ W.

¤
We define the one-to-many map ϕ from C3(p) to

C3(p′) by setting ϕ(χ) = ϕs(χ) for a particular direction
s. To define ν and s, we employ the notion of
approximation also used in [8] and based on ideas
introduced by Sapozhenko in [16]. For γ ∈ W, we say
A ⊆ V is an approximation of γ if

AE ⊇ W E and AO ⊆ WO,

dAO (x) ≥ 2d−
√

d for all x ∈ AE

and

dE\AE (x) ≥ 2d−
√

d for all y ∈ O \AO,

where dX(x) = |∂x∩X|. Note that from (3.3) and (3.5),
W (γ) is an approximation of γ.

Before stating our main approximation lemma,
which is a slight modification of [8, Lemma 2.18], it will
be convenient to further refine our partition of cutsets.
To this end set

W(we, wo, v) =



γ :

γ ∈ Γ(I) for some χ ∈ Ceven
3

with |WO| = wo, |W E | = we

and v ∈ W E



 .

Note that by (3.5) we have |γ| = 2d(|WO| − |W E |) so
W(we, wo, v) ⊆ W((wo − we)/2d, v).



Lemma 4.1. For each we, wo and v there is a family
A(we, wo, v) satisfying

|A(we, wo, v)| ≤ exp
{

O
(
(wo − we)d−

1
2 log

3
2 d

)}

and a map π : W(we, wo, v) → A(we, wo, v) such that
for each γ ∈ W(we, wo, v), π(γ) is an approximation
for γ.

Proof: See [7, Lemma 4.2]. ¤
We are now in a position to define ν and s. Our

plan for each fixed χ′ ∈ C3(p′) is to fix we, wo and
A ∈ W(we, wo, v) and to consider the contribution to
the sum in (4.24) from those χ ∈ ϕ−1(χ′) with π(γ) = A
(where for each χ, γ is a particular γ ∈ Γ(I)∩W(c1, v1)).
We will try to define ν in such a way that each of these
individual contributions to (4.24) is small; to succeed in
this endeavor we must first choose s with care. To this
end, given γ ∈ W(we, wo, v), set

QE = AE ∩∂ext(O\AO) and QO = (O\AO)∩∂extA
E ,

where A = π(γ) in the map guaranteed by Lemma 4.1.
To motivate the introduction of QE and QO, note that
for γ ∈ π−1(A) we have (by (3.3) and (3.5))

AE \QE ⊆ W E ,

E \AE ⊆ E \W E ,

AO ⊆ WO,

and
O \ (AO ∪QO) ⊆ O \WO.

It follows that for each γ ∈ π−1(A), QE∪QO contains all
vertices whose location in the partition TL,d = W ∪W is
as yet unknown. We choose s(χ) to be the smallest s for
which both of |W s| ≥ .8(wo−we) and |σs(QE)∩QO| ≤
5|W s|/

√
d hold. This is the direction that minimizes

the uncertainty to be resolved when we attempt to
reconstruct χ from the partial information provided
by χ′ ∈ ϕ−1(χ), s and A. (That such an s exists is
established in [8, (49) and (50)] by an easy averaging
argument). Note that s depends on γ but not I.

Now for each χ ∈ C3(p) let γ ∈ Γ(I) be a particular
cutset with γ ∈ W(c1, v1). Let ϕ(χ) be as defined
before, with s as specified above. Define

C = W s ∩AO ∩ σs(QE)

and
D = W s \ C,

and for each χ′ ∈ ϕ(χ) set

ν(χ, χ′) =
(

1
4

)|C∩I(χ′)|(3
4

)|C\I(χ′)|(1
2

)|D|
.

Note that for χ ∈ ϕ−1(χ′), ν(χ, χ′) depends on W but
not on χ itself.

Since C ∪D partitions W we easily have (4.23). To
obtain (4.22) and so (3.7) we must establish (4.24).

Fix we, wo such that 2d(wo − we) = c1. Fix
A ∈ A(we, wo, v1) and s ∈ {±1, . . . ,±d}. For χ with
γ ∈ W(we, wo, v1) write χ ∼s A if it holds that π(γ) = A
and s(χ) = s. We claim that with A, s, wo and we fixed,
for χ′ ∈ C3(p′)
(4.25)
∑ {

ν(χ, χ′) : χ ∼s A, χ ∈ ϕ−1(χ′)
} ≤

(√
3

2

)wo−we

.

We could extract this directly from [9], but for the
convenience of the reader we describe a proof below.

Write C3(p)(we, wo, s, A, χ′) for the set of all χ ∈
C3(p) such that W ∈ W(we, wo, v1), π(γ) = A, s(χ) = s

and χ′ ∈ ϕ(χ) and set U = QE ∩ σ−s(χ′). Say that a
triple (K,L, M) is good for χ if it satisfies the following
conditions.

K ∪ L ∪M is a minimal vertex cover of QE ∪QO,

K ⊆ QO, L ⊆ U and M ⊆ QE \ U

and
K = ∂ext(U \ L).

We begin by establishing that χ ∈ C3(p)(we, wo, s, A, χ′)
always has a good triple.

Lemma 4.2. For each χ ∈ C3(p)(we, wo, s, A, χ′) the
triple

(K̂, L̂, M̂) := (W ∩QO, U \W, (QE \ U) \W )

is good for χ.

Proof: [8, around discussion of (54)]. ¤
In view of Lemma 4.2 there is a triple (K, L, M)

that is good for χ and which has |K| + |L| as small as
possible. Choose one such, say (K0(χ), L0(χ),M0(χ)).
Set K ′(χ) = K0 \ K̂ and L′(χ) = L0 \ L̂. Lemma 4.3
below establishes an upper bound on ν(χ, χ′) in terms of
|K0|, |L0|, |K ′| and |L′|, and Lemma 4.4 shows that for
each choice of K ′, L′ there is at most one χ contributing
to the sum in the lemma. These two lemmas combine
to give (4.25).

Lemma 4.3. For each χ ∈ C3(p)(we, wo, s, A, χ′),

ν(χ, χ′) ≤
(√

3
2

)wo−we

2|K0|

3|K0|+|L0|2|K′|−|L′|

:= B(K ′, L′).



Proof: We follow [8, from just before (55) to just after
(60)], making superficial changes of notation. ¤

The inequality in Lemma 4.3 is the 3-coloring ana-
logue of the main inequality of [8]. The key observation
that makes this inequality useful is the following.

Lemma 4.4. For each we, wo, s, A, χ′, K ′ and L′,
there is at most one χ with χ ∈ C3(p)(we, wo, s, A, χ′),
K ′ = K ′(χ) and L′ = L′(χ).

Proof: In [8, (56) and following] it is shown that K ′ and
L′ determine WO via

K̂ = (K0 \K ′) ∪ (∂extL
′ ∩QO)

and so W (via W E = {v ∈ E : ∂v ⊆ WO}). But then
by Claim 4.2 K ′ and L′ determine χ. ¤

Lemmas 4.3 and 4.4 together now easily give (4.25):
∑

χ∈C3(p)(we,wo,s,A,χ′)

ν(χ, χ′) ≤
∑

K′⊆K0, L′⊆L0

B(K ′, L′)

≤
(√

3
2

)wo−we

.

We have now almost reached (4.24). With the steps
justified below we have that for each χ′ ∈ C3(p′)

∑

χ∈ϕ−1(χ′)

ν(χ, χ′) ≤
′∑ {

ν(χ, χ′) :
χ ∼s A,
χ ∈ ϕ−1(χ′)

}

≤ 2dc
2d

d−1
1 |A(we, wo, v1)|

(√
3

2

) c1
2d

(4.26)

≤ 2dc
2d

d−1
1 exp {−Ω (c1/d)}(4.27)

≤ exp {−Ω (c1/d)} ,(4.28)

completing the proof of (4.24). In the first inequality,∑′ is over all choices of we, wo, s and A. In (4.26),
we note that there are |A(we, wo, v1)| choices for A, 2d

choices for s and c
d/(d−1)
1 choices for each of we, wo (this

is because c1 ≥ (we +wo)1−1/d, by (3.6)), and we apply
(4.25) to bound the summand. In (4.27) we use Lemma
4.1. Finally in (4.28) we use c1 ≥ d1.9 (again by (3.6))
to bound 2dc

2d/(d−1)
1 = exp{o(c1/d)}.
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