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1. Lots of people were at the Mall in DC on Tuesday, and there was much hugging. Prove that
there were two people who were each involved in the same number of hugs. (Assume that
all hugs involved exactly two people.)

Solution: n people, each hugged some number between 0 and n − 1; but, it’s not possible
for someone to have hugged 0 people and someone else to have hugged n − 1; so there are
n − 1 possible hug-numbers (either 0 through n − 2 or 1 through n − 1) distributed among
n people; by pigeon-hole principle, at least two people must get the same number.

2. The multinomial coefficient
(

n
a1,a2,...,ak

)
(with

∑
i ai = n and each ai ≥ 0) is defined by(

n

a1, a2, . . . , ak

)
=

n!

a1!a2! . . . ak!
.

(a) Give a combinatorial interpretation (beginning “it’s the number of lists of length n from
an alphabet of size k . . . ”).
Solution: It’s the number of lists of length n from an alphabet of size k in which the
ith letter occurs ai times.

(b) Give a combinatorial argument for the following identity, called the Multinomial The-
orem: for all x1, . . . , xk ∈ R and all n ∈ N,

(x1 + x2 + . . .+ xk)
n =

∑
a1+a2+...+ak=n, ai≥0

(
n

a1, a2, . . . , ak

)
xa1

1 x
a2
2 . . . xak

k .

(Notice that this reduces to the binomial theorem when k = 2.)
Solution: When expand out the left hand side as

(x1 + x2 + . . .+ xk)(x1 + x2 + . . .+ xk) . . . (x1 + x2 + . . .+ xk) = F1F2 . . . Fk,

the number of times that the term xa1
1 x

a2
2 . . . xak

k occurs is equal to the number of lists
of length n from alphabet {x1, . . . , xk} in which the xi occurs ai times (the positions
in which xi occurs corresponding to the factors in which xi is the chosen term).
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(c) Give a combinatorial argument for the following identity, a generalization of Pascal’s
identity

(
n
r

)
=
(
n−1
r

)
+
(
n−1
r−1

)
:(

n

a1, a2, . . . , ak

)
=

(
n− 1

a1 − 1, a2, . . . , ak

)
+

(
n− 1

a1, a2 − 1, . . . , ak

)
+. . .+

(
n− 1

a1, a2, . . . , ak − 1

)
.

Solution: The jth term on the right-hand side the number of lists of length n from
an alphabet of size k in which the ith letter occurs ai times, and with the jth letter
occurring in the first position. Since some letter must occur in the first position, when
we sum we get the number of lists of length n from an alphabet of size k in which the
ith letter occurs ai times.

3. The polynomial principle is the assertion that if two polynomials (in variable x) agree at
infinitely many values (for example, at all positive integers), then they are equal for all
values of x.

(a) Use this to give a new combinatorial proof of the binomial theorem. (Begin by pulling
out a factor of xn from both sides, so that both sides become polynomials of a single
variable, z := y/x. Then check that both sides count the same thing for each z ∈ N.)
Solution: The case x = 0 of the binomial theorem is trivial, so it’s ok to divide both
sides by xn. After the suggested transformation, we’re left with

(1 + z)n =
n∑
i=0

(
n

i

)
zn−i.

For each positive integer z, the left-hand side counts the number of n-words on alphabet
[1 + z]. The ith term on the right-hand side counts the number of n-words on alphabet
[1 + z] in which the letter 1 occurs i times (

(
n
i

)
choices for the location of the 1’s and

zn−i choices for filling letters into the remaining n − i slots using only the z letters
{2, . . . , 1 + z}). Summing over i, we get all n-words on alphabet [1 + z]. So the
identity holds for all positive integers; by the polynomial principle, the identity holds
for all z.

(b) The polynomial principle also holds for polynomials of many variables; do West 1.1.30.
Solution: Induction on k; base case (k = 1) is assumed. Viewed as a polynomial in x1,
p(x1, . . . , xk) is a polynomial of degree at most d1 whose coefficients are polynomials
in x2, . . . , xk with the maximum degree of xi being at most di; say p(x) = p1x

d1 +
p2x

d1−1+. . .+pd1 . For each fixed (x2, . . . , xk) ∈
∏k

i=2 Si, p(x) reduces to a polynomial
with real coefficients that vanishes at d1 + 1 places, so is identically zero. It follows
that each of p1, . . . , pd1 vanishes on

∏k
i=2 Si, and so by induction are identically zero.

Thus the original polynomial is identically zero.
If a polynomial of several variables (x1, . . . , xk) vanishes at all positive integers, then in
particular it vanishes on some set of the form

∏k
i=1 Si where Si is a set of size exceeding

the maximum degree of x)i appearing in the polynomial, so it is identically zero.
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4. (a) Draw the tree whose Prüfer Code is (6, 1, 2, 1, 2, 1, 6).
Solution: . . .

(b) A star is a tree in which one vertex is joined to all the others. What are the possible
Prüfer Codes of a star on n vertices?
Solution: The star in which the label of the central vertex is i (i = 1, . . . , n) has Prüfer
Code (i, i, i, . . . , i). (Notice that there are n stars, and we’ve listed n Prüfer Codes.)

(c) A path is a tree in which two vertices have degree 1 and all the rest have degree 2. What
are the possible Prüfer Codes of a path on n vertices?
Solution: There are n!/2 such trees. By the degree characterization of Prüfer Codes,
each path has a list of n − 2 distinct symbols as its code (a list of all the degree 2
vertices, in some order). There are

(
n
n−2

)
(n− 2)! = n!/2 such lists, so the set of Prüfer

Codes of paths must be exactly the set of simple (n− 2)-words on alphabet [n].

5. West 1.1.18

Solution: There are four types of lists: those beginning and ending with a run of 1’s; those
beginning and ending with a run of 0’s; those beginning with a run of 1’s and ending with a
run of 0’s; and those beginning with a run of 0’s and ending with a run of 1’s. We’ll count
the first of these. There is a bijection between [lists of m 1’s and n 0’s containing exactly k
runs of 1’s and beginning and ending with a run of 1’s (and therefore also containing k − 1
runs of 0’s)] and [pairs of compositions, the first of m into k parts, the second of n into k−1
parts]. It follows that the number of lists of the first type is(

m− 1

k − 1

)(
n− 1

k − 2

)
.

Using similar observations for the other three parts, we find that the total number of lists is(
m− 1

k − 1

)(
n− 1

k − 2

)
+ 2

(
m− 1

k − 1

)(
n− 1

k − 1

)
+

(
m− 1

k − 1

)(
n− 1

k

)
or (

m− 1

k − 1

)((
n− 1

k − 2

)
+ 2

(
n− 1

k − 1

)
+

(
n− 1

k

))
.

Above is how I thought of the problem. Many of you gave a simpler (also correct) expres-
sion: (

m− 1

k − 1

)(
n+ 1

k

)
.

6. West 1.1.31

Solution: Fix positive integers x and y. The left-hand sides counts the number of simple
n-words on alphabet [x+ y]. The ith term on the right-hand side counts the number of such
words in which i of the letters come from [x] and the remaining letters from {x+ 1, . . . , x+
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y}. Since each word must include i letters from [x] for some i = 1, . . . , n, it follows that the
right-hand side also counts simple n-words on alphabet [x + y], so the two sides are equal.
Since they are equal for all positive integers, they are identical (by the polynomial principle).

7. West 1.1.36

Solution: It’s
k∑
i=0

compositions of i into n parts =
k∑
i=0

(
i− 1

n− 1

)
.

By a binomial coefficient summation identity, this simplifies to
(
k
n

)
(think of counting subsets

of [k] of size n by first fixing the largest element). To see this simpler expression directly,
notice that by adding a (positive) dummy variable xn+1 to the equation, we can biject the set
of solutions to the compositions of k + 1 into n+ 1 parts: there are

(
n
k

)
such.

To see the answer even more directly, note that the following is a bijection from solutions to∑n
i=1 xi = k in positive integers and subset of [k] of size n:

(x1, . . . , xn)→ {x1, x1 + x2, . . . , x1 + . . .+ xk}.

The map is clearly injective (look at the first place where two compositions differ) and it is
also surjective, since the set {a1, . . . , an} (with a1 < . . . < an) is the image of (a1, a2 −
a1, a3 − a2, . . . , ak − ak−1).

8. West 1.2.13a)

Solution: I’ll do induction on n. The identity is clearly true for n = 0 and all values of k.
For n > 0 (

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(n− 1)!

k!(n− k − 1)!
+

(n− 1)!

(k − 1)!(n− k)!

=
(n− 1)!

(k − 1)!(n− k − 1)!

(
1

k
+

1

n− k

)
=

(n− 1)!

(k − 1)!(n− k − 1)!

(
n

k(n− k)

)
=

n!

k!(n− k)!
.

9. West 1.2.13c)

Solution: Life is a lot easier here if we avail of the fact that
(
n
k

)
is 0 if k > n or k < 0. This

allows us to write the binomial theorem as

(x+ y)n =
∑
k

(
n

k

)
xkyn−k
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where the sum is unrestricted (except to integral k).

Again, we’ll do induction on n, with the case n = 0 trivial. For n > 0∑
k

(
n

k

)
xkyn−k =

∑
k

(
n− 1

k

)
xkyn−k +

∑
k

(
n− 1

k − 1

)
xkyn−k

= y
∑
k

(
n− 1

k

)
xky(n−1)−k + x

∑
k

(
n− 1

k − 1

)
xk−1y(n−1)−(k−1)

= y(x+ y)n−1 + x(x+ y)n−1

= (x+ y)n.

10. West 1.2.25

Solution: It’s clear by inspection that a1 = 1, a2 = 1+6, a3 = 1+6+12, a4 = 1+6+12+18
and in general an = 1 + 6

∑n−1
i=1 i = 1 + 6

(
n−1

2

)
, so that

∑n
k=1 ak = n+ 6

∑n
k=1

(
k−1
2

)
. Use

a summation identity, this is n+ 6
(
n+1

3

)
= n3. As for a bijection . . .

11. West 1.2.28

Solution: Here’s a general identity, that generalizes the binomial theorem:

n∏
i=1

(xi + yi) =
∑
S⊆[n]

∏
i 6∈S

xi
∏
i∈S

yi.

(To prove this, just think of the choices we make as we run though the n factors on the left
while expanding out the product).

With all xi = 1, and yi = 1/i, the identity becomes

∑
S⊆[n]

∏
i∈S

1

i
=

n∏
i=1

(
1 +

1

i

)
= n+ 1.

With all xi = 1, and yi = −1/i, the identity becomes

∑
S⊆[n]

(−1)|S|
∏
i∈S

1

i
=

n∏
i=1

(
1− 1

i

)
= 0.

NB: By convention, the product over an empty set is 1 (rather than 0).

12. West 1.2.38

Solution: We count the pairs (X, Y ) in two ways:

(a) Choose X of size k from M , then Y of size m from X ∪N ; total
(
m
k

)(
n+k
m

)
. Summing

over k we get that the left-hand side counts the number of pairs.
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(b) Choose Y ∩ N of size k from N , then M \ Y from M (necessarily of size k, since
we must have |Y | = m), then choose X \ Y arbitrarily from M \ Y ; total

(
n
k

)(
m
k

)
2k.

Summing over k we get that the left-hand side counts the number of pairs.

13. We defined the extended Prüfer code of a labeled tree T on vertex set {1, . . . , n} as follows:
set T0 = T ; for i = 1, . . . n − 1, let bi be the label of the lowest labeled leaf of Ti−1, and ai
the label of its neighbour; let Ti be the tree obtained from Ti−1 by deleting the lowest labeled
leaf and its edge; then set a = (a1, . . . , an−1) and b = (b1, . . . , bn−1). We then defined the
Prüfer code of T to be the string a′ = (a1, . . . , an−2). We observed

• T is reconstructible from its extended Prüfer code

• an−1 = n always

• for i = 0, . . . , n− 2, the Prüfer code of Ti is just (ai+1, . . . , an−2)

• the number of occurrences of label i in the Prüfer code is one less than the degree of i
in the tree

• the extended Prüfer code (and therefore the tree T ) is reconstructible from the Prüfer
code via the following procedure:

– a = (a1, . . . , an−2, n)

– for i = 1, . . . , n−1, bi is the least label not appearing in {b1, . . . , bi−1}∪{ai, . . . , an−2}
• Each labeled tree on {1, . . . , n} has a distinct Prüfer code consisting of a string of

length n− 2 from the alphabet {1, . . . , n}.

Complete the proof of Cayley’s Theorem by proving that if (a1, . . . , an−2) is a string of
length n − 2 from the alphabet {1, . . . , n}, and we set an−1 = n and (for i = 1, . . . , n − 1)
bi to be the least label not appearing in {b1, . . . , bi−1} ∪ {ai, . . . , an−2}, then the set of pairs
{{a1, b1}, {a1, b1}, . . . , {an−1, bn−1}} form the edges of a tree on {1, . . . , n} whose Prüfer
code is (a1, . . . , an−2).

14. Here’s a series of short exercises that leads to a celebrated conclusion. n is any integer here,
and p is always a prime number.

(a) Give a combinatorial proof that
(
2n
n

)
≥
(
2n
k

)
for all n, k. Hint: exhibit an injection

from the subsets of size k (of a set of size 2n) to the subsets of size n.

(b) Conclude from part a) that
(
2n
n

)
≥ 4n

2n+1
. Hint: consider the expression (1 + 1)2n.

(c) Defining op(n) to be the highest power of the prime p that divides n, verify the (simple)
identities op(ab) = op(a)+ op(b) and op(a/b) = op(a)− op(b). (Assume for the second
that b|a, that is, that a/b is an integer.)

(d) Using part c), show that if 2n/3 < p ≤ n then op(
(
2n
n

)
) = 0.

(e) Show that op(n!) =
∑

i≥1[n/p
i].
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(f) Show that if p|
(
2n
n

)
, then pop((2n

n )) ≤ 2n. Hint: let r(p) be such that pr(p) ≤ 2n <

pr(p)+1. Argue that op(
(
2n
n

)
) ≤ r(p) using parts c) and e).

(g) Show that
(
2m+1
m

)
≤ 22m for all m. Hint: use the binomial theorem and the identity(

n
k

)
=
(

n
n−k

)
.

(h) Show that
∏

m+2≤p≤2m+1 p ≤
(
2m+1
m

)
where the product is over primes. Hint: this is

easy and doesn’t involve any calculation.

(i) Show that
∏

p≤n p ≤ 4n for all n (where the product is over primes). Hint: Use
induction on n; you’ll probably need to deal with the cases n even and n odd separately.
For n odd (n = 2m+ 1), parts g) and h) might be helpful.
Now write

(
2n
n

)
= ABC where A consists only of prime factors that are less than

√
2n,

B consists only of prime factors that are between
√

2n and 2n/3, and C consists only
of prime factors that are greater than n and at most 2n. (By part d), there are no prime
factors of

(
2n
n

)
between 2n/3 and n).

(j) Show that A ≤ 2n
√

2n. Hint: At most how many prime factors can be involved in A?
By part f), at most how much can each prime factor contribute to A?

(k) Show that B ≤ 42n/3. Hint: use part f) to figure out what is op(
(
2n
n

)
) for the p con-

tributing to B, and then use part i).

(l) Show that C ≥ 4n/3

(2n+1)2n
√

2n
. Hint: combine parts b), j) and k).

(m) Show that for all sufficiently large n, C > 1.
Bertrand’s Postulate is the statement that for all n ≥ 1, there is a prime number p
satisfying n < p ≤ 2n. It was verified by Bertrand in 1845 for n < 3000000, and
proved for all n by Tchebychev in 1850 (using complex analysis).

(n) Conclude from part m) that Bertrand’s postulate is true for all large n.
Maple tells me that the right hand side of the inequality in part l) is greater than 1 for all
n ≥ 468, and so the argument outlined in this exercise verifies Bertrand’s postulate for
all n ≥ 468. This beautiful elementary argument appeared in Paul Erdős’ first paper
(1932).

(o) 467 cases of Bertrand’s postulate remain to be verified (n = 1, 2, . . . , 467). Find a
quick argument that deals with all of these cases.

15. Complete the characterization of solutions to a linear, finite order recurrence by proving
the following: if α1, . . . , αr are distinct complex numbers (all non-zero) and d1, . . . , dr are
non-negative integers, then the sequences

< αn1 >,< n(1)α
n
1 >, . . . , < n(d1−1)α

n
1 >,< αn2 >,< n(1)α

n
2 >, . . . ,

< n(d2−1)α
n
1 >, . . . , < αnr >,< n(1)α

n
r >, . . . , < n(dr−1)α

n
r >

are linearly independent. (Recall that< αn1 > is shorthand for the sequence (1, α1, α
2
1, α

3
1, . . .),

etc.)
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Solution: Consider a possible linear relation:

λ10 < αn1 > +λ11 < n(1)α
n
1 > + . . .+ λr(dr−1) < n(dr−1)α

n
r >=< 0 > .

We claim by induction on
∑r

i=1 di that all the λ’s must be 0. Dotting both sides with < xn >
we get

λ10

1− α1x
− λ11α

2
1x

2

(1− α1x)2
+. . .+

λjk(−1)kk!α2k
j x

k

(1− αjx)k
+. . .+

λr(dr−1)(−1)dr−1(dr − 1)!α
2(dr−1)
r xdr−1

(1− αrx)dr−1
= 0

the equality valid for all x inside in a suitable small circle around the origin (the circle
|x| < 1

|α1| , if we assume wlog that α1 is the largest of the αi’s in magnitude). Putting the
whole expression under a common denominator

∏r
i=1(1− αix)di−1 we get a polynomial in

the numerator that includes the term:

λ1(d1−1)(−1)d1−1(d1 − 1)!α
2(d1−1)
1 xd1−1

r∏
i=2

(1− αix)di−1.

All other terms include (1 − α1x) as a factor. If we evaluate at x = 1/α1 (valid? take limit
as x→ 1/α1) we get λ1(d1−1) = 0; the result follows by induction.

16. The Delannoy numbers clearly satisfy the recurrence relation

dn,m = dn−1,m + dn,m−1 + dn−1,m−1, n,m ≥ 1

with initial conditions dn,0 = 1 = d0,m for all n,m ≥ 0.

Let an,m denote the number of points in the Hamming ball of radius m in Zn. By showing
that the an,m satisfy the same recurrence relation (with the same boundary conditions) as the
Delannoy numbers, show that dn,m = am,n for all n,m ≥ 0.

Solution: This is West Proposition 2.1.10 and Remark 2.1.11 (page 70).

17. In class we established a recurrence relation for the Catalan numbers: C0 = 1, Cn =∑n
k=1Cn−kCk−1 for n ≥ 1. Let Tn be the number of triangulations of a convex (n+ 2)-gon.

Show that Tn = Cn by arguing that the Tn’s satisfy the same recurrence relation as the Cn’s.
Hint: Focus attention on one side of the (n + 2)-gon. Which triangle of the triangulation
does this side belong to?

Solution: This is West Remark 2.1.18 (page 68).

18. Wilf Chapter 1, question 11.

Solution: Wilf page 199.

19. Wilf Chapter 1, question 21 a).
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Solution: The nth derivative of eex is

ee
x
∑
k

S(n, k)ekx = ee
x

n∑
k=0

S(n, k)ekx

where S(n, k) is the Stirling number of the second kind. We can prove this by induction. It’s
certainly true for n = 0 (remember that S(0, 0) = 1). For n > 0, the nth derivative is the
derivative of the (n− 1)st derivative (which is by induction eex ∑

k S(n− 1, k)ekx). So the
nth derivative is

ee
x
∑
k

kS(n− 1, k)ekx + ee
x
∑
k

S(n− 1, k)e(k+1)x (product rule)

= ee
x
∑
k

(kS(n− 1, k) + S(n− 1, k − 1)) ekx (reindexing second sum)

= ee
x

n∑
k=0

S(n, k)ekx (basic recurrence satisfied by S’s).

20. West 2.1.19

Solution: Recall that F̂k counts the number of compositions of n into parts that are either
size 1 or 2; that is, the number of solutions to

∑
i xi = n with each xi = 1 or 2. Such a

composition of n + m falls into one of two categories: those in which there is some j with∑
i≤j xi = n and

∑
i>j xi = m, and those in which there is no such j. There are F̂nF̂m

compositions of the first kind (since any such can be decomposed into an initial segment
which is a decomposition of n and a terminal segment which is a decomposition ofm). There
are F̂n−1F̂m−1 compositions of the second kind (since any such can be decomposed into an
initial segment which is a decomposition of n− 1, followed by a part of size 2, followed by
a terminal segment which is a decomposition of m− 1). So F̂n+m = F̂nF̂m + F̂n−1F̂m−1.

A special case of this is

F̂kn−1 = F̂n−1F̂(k−1)n + F̂n−2F̂(k−1)n−1, (?)

valid for k ≥ 1. We can now prove that F̂n−1|F̂kn−1 for all k ≥ 1, by induction on k. It’s
trivial for k = 1, and for k > 1, since (by induction) F̂n−1 divides both terms of the rhs of
(?), it divides the lhs.

21. West 2.1.43 b)

Solution: Clearly a1 = 1. For n > 1, let x11, x12, . . . , xn1, xn2 be the points. What can
x11 be paired up with? Something of the form xk2, for some k = 1, . . . , n; because if x11 is
paired with xk1 then the remaining points are partitioned into two sets each of odd size (those
that fall to one side of the line joining x11 and xk1 and those on the other), so no completion
is possible. If x11 is joined to xk2, how many completions are possible? ak−1 ways to pair
up the points x12 through xk1 and, independently, an−k ways to pair up the remaining points.
So an =

∑n
k=1 ak−1an−k, the Catalan recurrence (with the Catalan initial condition a0 = 1).
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22. West 2.2.13

Solution: We begin with a0 = 0. For n > 0: where does the first 1 appear? In one of
positions k = 1, . . . , n. In the k − 1 spaces before the first 1, we should fill in an arbitrary
word on alphabet {3, 4}; there are 2k−1 such words. In the remaining n − k positions, we
should fill in an arbitrary word on alphabet {1, 2, 3, 4}; there are 4n−k such words. So

an =
n∑
k=1

2k−14n−k =
4n

2

n∑
k=1

(
1

2

)k
=

4n

2

(
1−

(
1

2

)n)
= 22n−1 − 2n−1 = (2n − 1)2n−1.

A direct argument: Let A be the set of indices at which a 1 or a 2 appear. For each choice
for A, there are 2|A|−1 choices for the 1’s and 2’s (the first index in A must be a 1, but the
rest are free), and 2n−|A| choices for for the 3’s and 4’s, so 2n−1 choices in all. And, since A
is not empty, there are 2n − 1 choices for A.

23. West 2.2.34

Solution: Let D(x, y) =
∑

m, n≥0 dm,nx
myn be the generating function. Using the recur-

rence and the initial conditions we get

D(x, y) = 1 + xD(x, y) + yD(x, y) + xyD(x, y)

and so

D(x, y) =
1

1− x− y − xy

=
1

(1− x)(1− y)
(

1−x−y−xy
(1−x)(1−y)

)
=

1

(1− x)(1− y)
(
1− 2xy

(1−x)(1−y)

)
=

1

(1− x)(1− y)
∑
k≥0

2k
xk

(1− x)k
yk

(1− y)k

=
∑
k≥0

2k
xk

(1− x)k+1

yk

(1− y)k+1

=
∑
k≥0

2k
∑
s≥0

(
s

k

)
xs
∑
t≥0

(
t

k

)
yt

What’s the coefficient of xmyn in this? From each k ≥ 0 we get a contribution of 2k
(
m
k

)(
n
k

)
,

and so

dm,n =
∑
k≥0

2k
(
m

k

)(
n

k

)
.
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24. West 3.2.7a)

Solution: Set an =
∑

i 2i
(
n
2i

)
. We have

an = [xn]
∑
n

∑
i

2i

(
n

2i

)
xn (hint)

= [xn]
∑
i

2i
∑
n

(
n

2i

)
xn (change order)

= [xn]
∑
i

2i
x2i

(1− x)2i+1
(standard identity)

= [xn]
2

1− x
∑
i

izi

(
z =

(
x

1− x

)2
)

(just rewriting)

= [xn]
2

1− x
z

(1− z)2
(fiddling with derivatives)

= [xn]
2x2 − 2x3

(1− 2x)2
(simplifying)

= [xn]

(
2x2

∑
i

(i+ 1)2ixi − 2x3
∑
i

(i+ 1)2ixi

)
(known identity for 1/(1− y)2)

= 2(n− 1)2n−2 − 2(n− 2)2n−3

= n2n−2.

Here’s a direct argument: the sum is counting the number of even-sized committees-with-
chair from n people, choosing the committee first. Choosing the chair first, the count is n
times the number of odd-sized subsets of a set of size n− 1; half of all possible subsets are
odd-sized, leading to the 2n−2 term.

The snake-oil method is longer and more intricate, and prone to mistakes when done by
hand. On the other hand, it is a purely mechanical process and can easily be coded; it’s a
way of obtaining identities without “thought”.

25. West 3.3.16

Solution: S(n, k) is the number of equivalence relations which have k non-empty parts;
each one corresponds to k! rankings (one for each ordering of the classes). So the number of
rankings is

n∑
k=1

k!S(n, k) =
n∑
k=1

k!
k∑
i=1

(−1)k−i
in

i!(k − i)!
.

Nothing much simpler than this is known.

26. West 3.3.37
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Solution: Let A(x) be the exponential generating function of permutations of n with only
odd parts. We get each such permutation by splitting the label set [n] into pieces and on
each piece of size k putting an odd cycle of length k. So if C(x) is the exponential gener-
ating function of (ck)k≥0 where ck is the number of odd cycles of length k, we have, by the
exponential formula,

A(x) = eC(x).

Since ck = 0 if k is even and (k − 1)! if k is odd, we have

C(k) = 0 + x+ 0x2 +
x3

3
+ 0x4 +

x5

5
+ . . .

and so
C ′(k) = 1 + x2 + x4 + . . . =

1

1− x2
=

1

2(1− x)
+

1

2(1 + x)

and

C(k) =
1

2
log

(
1 + x

1− x

)
so

A(x) =

√
1 + x

1− x
.

Now B(x) is the exponential generating function of permutations of n with only odd parts,
and an even number of them. This is the same as A(x) except that for odd n, B(x) has
coefficient 0. The way to pick out the even coefficients is

2B(x) = A(x) + A(−x) =

√
1 + x

1− x
+

√
1− x
1 + x

=
2√

1− x2
,

as claimed.

We have q = 0 when n is odd, and when n is even (say n = 2m),

q =

(
n
n/2

)
2n

=

(
2m
m

)
22m

=
(2m)!

m!m!22m
=

1

2mm!

(2m)!

2mm!
.

On the other hand, p is the coefficient of xn in B(x) (note that B(x) is the exponential
generating function, so we have already normalized by the total number of permutations,
n!). So for n odd, p = 0, and for n = 2m,

p = (−1)n/2
(
−1/2

n/2

)
= (−1)m

(
−1/2

m

)
=

1.3. . . . (2m− 3)(2m− 1)

2mm!
.

It doesn’t look very much like p = q, but a little manipulation gives

1.3. . . . (2m− 3)(2m− 1) =
(2m)!

2mm!

so that they are, in fact, equal.
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27. West 4.1.19

Solution: Imagine ordering the 2n courses, and assigning the first 2 courses to professor 1,
etc. Dealing with the obvious overcount, this gives a total of

(2n)!

2n

assignments.

For the second part, let Ai be the set of assignments in the spring in which professor i
repeats both his fall courses. We want to count the number of assignments which fall outside
A1 ∪ ∪An. In the language of inclusion-exclusion, we want to calculate

f(∅) =
∑
S

(−1)|S|g(S)

For S with |S| = k (wlog, S = 1, 2, . . . , k), g(S) = (2n−2k)!
2n−k , so the number we require is

n∑
k=0

(−1)k
(
n

k

)
(2n− 2k)!

2n−k
.

28. West 4.1.28

Solution: We try to use inclusion-exclusion to count the number of injections from [n] to [n]
(clearly n!). Let Ai be the number of functions from [n] to [n] that do not have i in the range.
In the language of inclusion-exclusion, f(∅) = n! and g(S) = (n− |S|)n, and so

n! =
n∑
k=0

(−1)k
(
n

k

)
(n− k)n.

29. If G is a d-regular graph with n vertices, then nd must be even (since it’s the sum of the
degrees and so must be equal to twice the number of edges). Show that this trivial necessary
condition on (n, d) for the existence of a d-regular graph with n vertices is also sufficient, by
constructing a d-regular graph with n vertices for all n ≥ 1, 0 ≤ d < n, nd even.

30. Petersen’s Theorem states that a bridgeless cubic graph has a 1-factor.

(a) Give an example of a cubic graph that doesn’t have a 1-factor.

(b) Give an example of a cubic graph with a bridge that does have a 1-factor.

31. Suppose that M is a matching in a bipartite graph that is not optimal (i.e., such that there is
another matching M ′ with |M ′| > |M |), then M has an augmenting path. (Note that M ′ and
M need not be related in any way; so for example you can’t assume that M ⊂M ′).
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