Three graph theory problems

Math 40210, Fall 2012

April 15, 2014

Assigning radio frequencies

There are ten broadcast towers, each of which are to be assigned a broadcast frequency

Towers within 50km of each other can't get same frequency How many different frequencies are needed?

Translation to graphs:
(1) Vertices: radio towers
(2) Edges: pairs of towers close enough to interfere with each other
(3) Task: assign broadcast frequencies to vertices, two vertices joined by an edge getting different frequencies, using as few frequencies as possible

Scheduling meetings

There are ten senatorial committees, each of which are to be assigned a meeting time

A pair of committees on which the same senator serves can't get same time slot

How many different time slots are needed?
Translation to graphs:
(1) Vertices: the committees
(2) Edges: pairs of committees that have a senator in common
(3) Task: assign time slots to vertices, adjacent vertices getting different time slots, using as few time slot as possible

Transporting animals

There are 45 animals that need to be moved from A to B
A pair of animals, one of whom eats the other, can't go into the same cage

How many different cages are needed?
Translation to graphs:
(1) Vertices: animals being transported
(2) Edges: pairs of animals, one of whom eats the other
(3) Task: assign cages to vertices, adjacent vertices getting different cages, using as few cages as possible

