Basic Combinatorics (Math 40210) Sec 01, Spring 2014, Quiz 2

Solutions

February 7, 2014

1. How many different solutions are there to the equation $a_{1}+a_{2}+\ldots+a_{k}=n$, if all of the a_{i} have to be integers that are at least 2? [If " 2 " is replaced by " 1 ", then the answer is $\binom{n-1}{k-1}$, the number of (strong) compositions of n into k parts]. Justify your answer.

Solution: Solving $a_{1}+a_{2}+\ldots+a_{k}=n$, with all a_{i} being integers at least 2 , is the same as solving $a_{1}^{\prime}+a_{2}^{\prime}+\ldots+a_{k}^{\prime}=n-k$, with all a_{i}^{\prime} being integers at least 1 (then just set $a_{i}=a_{i}^{\prime}+1$ for each $i)$. This in turn is the same as the number of (strong) compositions of $n-k$ into k parts; there are $\binom{n-k-1}{k-1}$ such compositions, so this is the answer to the original question.
2. Write down, and justify, the recurrence relation that expresses $S(n, k)$ in terms of $S(n-1, k)$ and $S(n-1, k-1)$ (here $S(n, k)$ is the Stirling number of the second kind, the number of partitions of [n] into k non-empty blocks).

Solution: $S(n, k)=S(n-1, k-1)+k S(n-1, k)$. The $S(n-1, k-1)$ term on the right-hand side counts those partitions of $[n]$ into k-non-empty blocks, in which element n is in a block on its own (and so the remaining $n-1$ elements must be partitioned into $k-1$ non-empty blocks). The $k S(n-1, k)$ term on the right-hand side counts those partitions of $[n]$ into k-non-empty blocks, in which element n is not in a block on its own: to get such a partition, first the remaining $n-1$ elements should be partitioned into k non-empty blocks, and then elements n should be added to one of these blocks (this is the fact or k). This counts all partitions of $n]$ into k-non-empty blocks, so the sum of these terms on the right-hand side is $S(n, k)$, the total number of partitions of $[n]$ into k-non-empty blocks.

