Basic Combinatorics (Math 40210) Sec 01, Spring 2014, Quiz 1

Solutions

February 11, 2014

1. Give a proof of the cancellation identity: for all $n \geq k \geq 0,\binom{n+1}{k+1}=\frac{n+1}{k+1}\binom{n}{k}$.

Algebraic proof:

$$
\begin{aligned}
\binom{n+1}{k+1} & =\frac{(n+1)!}{(k+1)!((n+1)-(k+1))!} \\
& =\frac{(n+1) n!}{(k+1) k!(n-k)!} \\
& =\frac{n+1}{k+1}\binom{n}{k}
\end{aligned}
$$

Combinatorial proof: We'll prove that $(k+1)\binom{n+1}{k+1}=(n+1)\binom{n}{k}$. The right-hand side counts the number of ways of selecting a committee of size $k+1$ from a group of $n+1$ people, with one member of the committee designated as the chair, by first selecting the chair from among the $n+1$ people ($n+1$ options), and then selecting the remaining k members of the committee from among the remaining n people ($\binom{n}{k}$ options). The left-hand side counts the same thing, by first selecting the $k+1$ members of the committee from among the $n+1$ people ($\binom{n+1}{k+1}$ options), and then selecting the chair from among the members of the committee ($k+1$ options).
2. Show that for every $n \geq 0$, and every integer k (positive or negative),

$$
\binom{n}{k}^{2} \geq\binom{ n}{k-1}\binom{n}{k+1}
$$

Solution: A combinatorial proof of this is quite difficult, but an algebraic proof is easy. The lefthand side is a square, so always a least 0 . If $k \leq 0$ then $\binom{n}{k-1}=0$ and the right-hand side is 0 ; if $k \geq n$ then $\binom{n}{k+1}=0$ and the left-hand side is 0 ; so the inequality is true for $k \leq 0$ and $k \geq n$. For $1 \leq k \leq n-1$,

$$
\binom{n}{k}^{2} \geq\binom{ n}{k-1}\binom{n}{k+1}
$$

is the same as

$$
\frac{n!n!}{k!(n-k)!k!(n-k)!} \geq \frac{n!n!}{(k-1)!(n-k+1)!(k+1)!(n-k-1)!}
$$

which is the same as

$$
(k+1)(n-k+1) \geq k(n-k),
$$

which is true since $k+1>k$ and $n-k+1>n-k$. So the inequality is also true for $1 \leq k \leq n-1$.

