Pascal's triangle

Math 40210, Fall 2012

October 25, 2012

Pascal's triangle - symbolic

$$
\begin{gathered}
\binom{0}{0} \\
\binom{1}{0}\binom{1}{1} \\
\left(\begin{array}{l}
2
\end{array}\right)\binom{2}{1}\binom{2}{2} \\
\binom{3}{0}\binom{3}{1}\binom{3}{2}\binom{3}{3} \\
\binom{4}{0}\binom{4}{1}\binom{4}{2}\binom{4}{3}\binom{4}{4} \\
\binom{5}{0}\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4}\binom{5}{5} \\
\binom{6}{0}\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5}\binom{6}{6} \\
\binom{7}{0}\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6}\binom{7}{7} \\
\binom{8}{0}\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7}\binom{8}{8}
\end{gathered}
$$

Pascal's triangle - filling out the edges

$$
\begin{gathered}
1 \\
11 \\
1\binom{2}{1} 1 \\
1\binom{3}{1}\binom{3}{2} 1 \\
1\binom{4}{1}\binom{4}{2}\binom{4}{3} 1 \\
1\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4} 1 \\
1\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5} 1 \\
1\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6} 1 \\
1\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7} 1
\end{gathered}
$$

Pascal's triangle - using formula

$$
\begin{gathered}
1 \\
11 \\
1\binom{2}{1} 1 \\
1\binom{3}{1}\binom{3}{2} 1 \\
1\left(\begin{array}{l}
4
\end{array}\right)\binom{4}{2}\binom{4}{3} 1 \\
1\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4} 1 \\
1\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5} \\
1\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6} 1 \\
1\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7} 1
\end{gathered}
$$

Pascal's triangle - using formula

$$
\begin{gathered}
1 \\
11 \\
11+11 \\
1\binom{3}{1}\binom{3}{2} 1 \\
1\binom{4}{1}\binom{4}{2}\binom{4}{3} 1 \\
1\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4} 1 \\
1\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5} \\
1\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6} 1 \\
1\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7} 1
\end{gathered}
$$

Pascal's triangle - using Pascal's formula

$$
\begin{gathered}
1 \\
11 \\
121 \\
1\binom{3}{1}\binom{3}{2} 1 \\
1\binom{4}{1}\binom{4}{2}\binom{4}{3} 1 \\
1\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4} 1 \\
1\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5} 1 \\
1\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6} 1 \\
1\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\left(\begin{array}{l}
8 \\
6 \\
6
\end{array}\right)\binom{8}{7} 1
\end{gathered}
$$

Pascal's triangle - using Pascal's formula

$$
\begin{gathered}
1 \\
11 \\
121 \\
1\binom{3}{1}\binom{3}{2} 1 \\
1\left(\begin{array}{l}
4
\end{array}\right)\binom{4}{2}\binom{4}{3} 1 \\
1\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4} 1 \\
1\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5} \\
1\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6} 1 \\
1\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\left(\begin{array}{l}
8 \\
6 \\
6
\end{array}\right)\binom{8}{7} 1
\end{gathered}
$$

Pascal's triangle - using formula

$$
\begin{gathered}
1 \\
11 \\
121 \\
11+22+11 \\
1\binom{4}{1}\binom{4}{2}\binom{4}{3} 1 \\
1\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4} 1 \\
1\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5} 1 \\
1\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6} 1 \\
1\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7} 1
\end{gathered}
$$

Pascal's triangle - using formula

$$
\begin{gathered}
1 \\
11 \\
121 \\
1331 \\
1\binom{4}{1}\binom{4}{2}\binom{4}{3} 1 \\
1\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4} 1 \\
1\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5} 1 \\
1\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6} 1 \\
1\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7} 1
\end{gathered}
$$

Pascal's triangle - using formula

$$
\begin{gathered}
1 \\
11 \\
121 \\
1331 \\
14641 \\
1\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4} 1 \\
1\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5} 1 \\
1\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6} 1 \\
1\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7} 1
\end{gathered}
$$

Pascal's triangle - using formula

1
11
121
1331
14641
15101051
1615201561
172135352171
18285670562881

Pascal's triangle - the row sums

$$
\begin{gathered}
1=1 \\
1+1=2 \\
1+2+1=4 \\
1+3+3+1=8 \\
1+4+6+4+1=16 \\
1+5+10+10+5+1=32 \\
1+6+15+20+15+6+1=64 \\
1+7+21+35+35+21+7+1=128 \\
1+8+28+56+70+56+28+8+1=256
\end{gathered}
$$

Pascal's triangle - the symbolic row sums

$$
\begin{gathered}
\binom{0}{0}=1 \\
\binom{1}{0}+\binom{1}{1}=2 \\
\binom{2}{0}+\binom{2}{1}+\binom{2}{2}=4 \\
\binom{3}{0}+\binom{3}{1}+\binom{3}{2}+\binom{3}{3}=8 \\
\binom{4}{0}+\binom{4}{1}+\binom{4}{2}+\binom{4}{3}+\binom{4}{4}=16 \\
\binom{5}{0}+\binom{5}{1}+\binom{5}{2}+\binom{5}{3}+\binom{5}{4}+\binom{5}{5}=32 \\
\binom{6}{0}+\binom{6}{1}+\binom{6}{2}+\binom{6}{3}+\binom{6}{4}+\binom{6}{5}+\binom{6}{6}=64 \\
\binom{7}{0}+\binom{7}{1}+\binom{7}{2}+\binom{7}{3}+\binom{7}{4}+\binom{7}{5}+\binom{7}{6}+\binom{7}{7}=128 \\
\binom{8}{0}+\binom{8}{1}+\binom{8}{2}+\binom{8}{3}+\binom{8}{4}+\binom{8}{5}+\binom{8}{6}+\binom{8}{7}=256 \\
\ldots
\end{gathered}
$$

Identity: for all $n \geq 0$,

$$
\sum_{i=0}^{n}\binom{n}{i}=2^{n}
$$

Pascal's triangle - the alternating row sums

$$
\begin{gathered}
1=1 \\
1-1=0 \\
1-2+1=0 \\
1-3+3-1=0 \\
1-4+6-4+1=0 \\
1-5+10-10+5-1=0 \\
1-6+15-20+15-6+1=0 \\
1-7+21-35+35-21+7-1=0 \\
1-8+28-56+70-56+28-8+1=0
\end{gathered}
$$

Pascal's triangle - the symbolic alternating row sums

$$
\begin{aligned}
& \binom{0}{0}=1 \\
& \binom{1}{0}-\binom{1}{1}=0 \\
& \binom{2}{0}-\binom{2}{1}+\binom{2}{2}=0 \\
& \binom{3}{0}-\binom{3}{1}+\binom{3}{2}-\binom{3}{3}=0 \\
& \binom{4}{0}-\binom{4}{1}+\binom{4}{2}-\binom{4}{3}+\binom{4}{4}=0 \\
& \binom{5}{0}-\binom{5}{1}+\binom{5}{2}-\binom{5}{3}+\binom{5}{4}-\binom{5}{5}=0 \\
& \binom{6}{0}-\binom{6}{1}+\binom{6}{2}-\binom{6}{3}+\binom{6}{4}-\binom{6}{5}+\binom{6}{6}=0 \\
& \binom{7}{0}-\binom{7}{1}+\binom{7}{2}-\binom{7}{3}+\binom{7}{4}-\binom{7}{5}+\binom{7}{6}-\binom{7}{7}=0 \\
& \binom{8}{0}-\binom{8}{1}+\binom{8}{2}-\binom{8}{3}+\binom{8}{4}-\binom{8}{5}+\binom{8}{6}-\binom{8}{7}+\binom{8}{8}=0
\end{aligned}
$$

Identity: for all $n \geq 1$,

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}=0
$$

Pascal's triangle - summing along diagonals

1
11
121
1331
14641
15101051
1615201561
172135352171
18285670562881

Pascal's triangle - symbolic sum along diagonals

$$
\begin{aligned}
& \binom{0}{0} \\
& \binom{1}{0}\binom{1}{1} \\
& \binom{2}{0}\binom{2}{1}\binom{2}{2} \\
& \binom{3}{0}\binom{3}{1}\binom{3}{2}\binom{3}{3} \\
& \binom{4}{0}\binom{4}{1}\binom{4}{2}\binom{4}{3}\binom{4}{4} \\
& \binom{5}{0}\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4}\binom{5}{5} \\
& \binom{6}{0}\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5}\binom{6}{6} \\
& \binom{7}{0}\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6}\binom{7}{7} \\
& \binom{8}{0}\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7}\binom{8}{8}
\end{aligned}
$$

Identity: for all $k \geq 0$, and $s \geq k$

$$
\sum_{i=k}^{s}\binom{i}{k}=\binom{s+1}{k+1}
$$

The vandermonde convolution

- Each week, IN lottery selects m numbers from a bag with $m+n$ numbers. When you buy a lottery ticket, you select ℓ numbers from the $m+n$. You have a k-win if you have exactly k of the the selected numbers among your ℓ.
- How many tickets are k-wins?
- It's $\binom{m}{k}\binom{n}{\ell-k}$ (automatically 0 if $k>\ell$ or $k>m$)
- How many tickets in all?

$$
\binom{m+n}{\ell}=\sum_{k}\binom{m}{k}\binom{n}{\ell-k}\left(\begin{array}{c}
\text { or } \sum_{k=0}^{\min \{\mathrm{m}, \ell\}}
\end{array}\binom{m}{k}\binom{n}{\ell-k}\right)
$$

