Using generating functions to solve recurrences

Math 40210, Fall 2012

November 15, 2012

Set up

- Start with recurrence

$$
a_{n}=c_{1} a_{n-1}+\ldots c_{k} a_{n-k} \text { for } n \geq k, a_{0}, \ldots, a_{k} \text { given }
$$

For example:

$$
f_{n}=f_{n-1}+f_{n-2} \text { for } n \geq 2, f_{0}=0, f_{1}=1
$$

- Form generating function

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}++a_{3} x^{3}+\ldots+a_{n} x^{n}+\ldots
$$

For example:

$$
F(x)=f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}+\ldots+f_{n} x^{n}+\ldots
$$

Manipulation

- Substitute known values (early on) and recurrence (later) For example:
$F(x)=0+1 x+\left(f_{1}+f_{0}\right) x^{2}+\left(f_{2}+f_{1}\right) x^{3}+\ldots+\left(f_{n-1}+f_{n-2}\right) x^{n}+\ldots$
- Manipulate to get generating function on right-hand side For example:

$$
\begin{aligned}
F(x) & =x+\left(f_{1} x^{2}+f_{2} x^{3}+\ldots\right)+\left(f_{0} x^{2}+f_{1} x^{3}+\ldots\right) \\
& =x+x\left(f_{1} x+f_{2} x^{2}+\ldots\right)+x^{2}\left(f_{0}+f_{1} x+\ldots\right) \\
& =x+x\left(F(x)-f_{0}\right)+x^{2} F(x) \\
& =x+x F(x)+x^{2} F(x)
\end{aligned}
$$

- Solve for the generating function For example:

$$
F(x)=\frac{-x}{x^{2}+x-1}
$$

Solution I

- Find a partial fractions decomposition of the generating function For example:

$$
F(x)=\frac{A}{x-r_{1}}+\frac{B}{x-r_{2}}
$$

where

- $r_{1}=\frac{-1+\sqrt{5}}{2}$ and
- $r_{2}=\frac{-1-\sqrt{5}}{2}$
are roots of denominator, and
- $A=-r_{1} / \sqrt{5}$ and
- $B=r_{2} / \sqrt{5}$
are found by combining the fractions, comparing the numerator of the result with the numerator of $F(x)$, and solving simultaneous equations

Solution II

- Rewrite the fractions in the form $\frac{1}{1-z}$

For example:

$$
F(x)=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\frac{x}{r_{1}}}\right)-\frac{1}{\sqrt{5}}\left(\frac{1}{1-\frac{X}{r_{2}}}\right)
$$

- Find the nth term of the sequence by extracting nth term of each fraction
For example:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1}{r_{1}}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1}{r_{2}}\right)^{n}
$$

- Simplify to taste

For example:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

Comments

- Works in principle for any linear recurrence In practice the partial fractions step can get very tricky, especially if the denominator has repeated roots (and in general the roots of the denominator cannot be found exactly)
- Comparison of closed-form and power series works fine inside radius of convergence of power series (however small)
- Just the closed form for the generating function tells you a lot. If

$$
A(x)=\frac{p(x)}{q(x)}=\frac{p(x)}{\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{k}\right)}
$$

with $p(x), q(x)$ are polynomials, q with distinct roots, then

$$
a_{n}=\gamma_{1}\left(\frac{1}{r_{1}}\right)^{n}+\ldots+\gamma_{k}\left(\frac{1}{r_{k}}\right)^{n}
$$

for some constants $\gamma_{1}, \ldots, \gamma_{k}$. So if r_{1} is the closest root to 0 ,

$$
a_{n} \approx\left(\frac{1}{r_{1}}\right)^{n}
$$

Example: Perrin sequence

- $a_{0}=3, a_{1}=0, a_{2}=2$ and $a_{n}=a_{n-2}+a_{n-3}$ for $n \geq 3$
- Solve for $A(X)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$ to get

$$
\frac{x^{2}-3}{x^{3}+x^{2}-1}=\frac{A}{x-r_{1}}+\frac{B}{x-r_{2}}+\frac{C}{x-r_{3}}
$$

where $\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)=x^{3}+x^{2}-1$, and, it turns out, $A=-r_{1}, B=-r_{2}$ and $C=-r_{3}$.

- So

$$
a_{n}=\left(\frac{1}{r_{1}}\right)^{n}+\left(\frac{1}{r_{2}}\right)^{n}+\left(\frac{1}{r_{3}}\right)^{n}
$$

and

$$
a_{n} \approx(1.32471)^{n}
$$

where $1.32471 \ldots$ is the plastic number

Perrin and primes

- Perrin (1899) noticed:
- if p is any prime, then $p \mid a_{p}$
- if n is a small composite, then $n \nmid a_{n}$
- He conjectured the following primality test:

$$
p \text { is a prime if and only if } p \mid a_{p}
$$

- In 1982, Adams and Shanks discovered that

$$
271441 \mid a_{271441}\left(\approx 10^{33,000}\right)
$$

but $271441=(521)^{2}$
Numbers like 271441 are called Perrin pseudoprimes

