Basic Combinatorics (Math 40210) Sec 01, Fall 2012, Quiz 5

Solutions
November 30, 2012

Define a sequence recursively as follows: $g_{0}=1, g_{1}=2, g_{n}=g_{n-1}+2 g_{n-2}$ for $n \geq 2$.

1. Use induction on n to show that for all $n, g_{n} \geq 2 f_{n}$, where f_{n} is the nth Fibonacci number (defined by the recurrence $f_{0}=0, f_{1}=1, f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$).
Solution: Base case $n=0: g_{0}=1$ and $f_{0}=0 ; 1 \geq 2.0$.
Base case $n=1: g_{1}=2$ and $f_{1}=1 ; 2 \geq 2.1$. (Notice that since the recurrence is valid only for $n=2$, I need to verify both $n=0$ and $n=1$ to get the induction started.)
Induction step: assuming $g_{k} \geq 2 f_{k}$ for all $k \leq n$, for some $n \geq 1$, have (with the first inequality being the induction hypothesis)

$$
\begin{aligned}
g_{n+1} & =g_{n}+2 g_{n-1} \\
& \geq 2 f_{n}+4 f_{n-1} \\
& \geq 2\left(f_{n}+f_{n-1}\right)+2 f_{n-1} \\
& \geq 2\left(f_{n}+f_{n-1}\right) \\
& =2 f_{n+1} .
\end{aligned}
$$

2. Find the generating function $G(x)=g_{0}+g_{1} x+g_{2} x^{2}+\ldots$ of the sequence as an explicit ratio of two polynomials. THERE'S NO NEED TO FIND AN EXPLICIT EXPRESSION FOR g_{n} !

Solution:

$$
\begin{aligned}
G(x) & =g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3}+\ldots \\
& =1+2 x+\left(g_{1}+2 g_{0}\right) x^{2}+\left(g_{2}+2 g_{1}\right) x^{3}+\ldots \\
& =1+2 x+\left(g_{1} x^{2}+g_{2} x^{3}+\ldots\right)+\left(2 g_{0} x^{2}+2 g_{1} x^{3}+\ldots\right) \\
& =1+2 x+x\left(g_{1} x+g_{2} x^{2}+\ldots\right)+2 x^{2}\left(g_{0}+g_{1} x+\ldots\right) \\
& =1+2 x+x\left(G(x)-g_{0}\right)+2 x^{2} G(x) \\
& =1+2 x+x(G(x)-1)+2 x^{2} G(x) .
\end{aligned}
$$

Solving for $G(x)$:

$$
G(x)=\frac{1+x}{1-x-2 x^{2}} .
$$

This can be simplified (but not necessary for full credit):

$$
\frac{1+x}{1-x-2 x^{2}}=\frac{1+x}{(1+x)(1-2 x)}=\frac{1}{1-2 x} .
$$

So, it turns out that $g_{n}=2^{n}$.

