Basic Combinatorics (Math 40210) Sec 01, Fall 2012, Quiz 1

Solutions

1. For the graph G drawn below, write down an $a-d$ walk that is not a path.

Solution: any walk along edges of the graph that starts at a, ends at d, and repeats an edge and/or a vertex will do. For example, $a-e-f-a-e-d$.
2. Draw the complement \bar{G} of G (the graph shown above), using the picture below as a starting point. Is \bar{G} bipartite? If it is, write down a valid partition $X \cup Y$ of the vertex set. If it is not, say why not.

Solution: \bar{G} is bipartite: setting $X=\{e, e, f\}$ and $Y=\{b, c, d\}$, we have no $X-X$ or $Y-Y$ edges (and all vertices covered, and X and Y disjoint).
3. The trace of an n by n matrix A, denoted by $\operatorname{Tr}(A)$, is the sum of the entries down the main diagonal (so for example $\operatorname{Tr}\left(\begin{array}{ll}2 & 1 \\ 5 & 7\end{array}\right)=9$). Show that for any graph with m edges and with adjacency matrix $A, \operatorname{Tr}\left(A^{2}\right)=2 m$.
Solution: The $i i$ entry of A^{2} counts the number of walks of length 2 that start and end at vertex i; this is exactly $d(i)$, the degree of i (one such walk for each edge). So the trace of A^{2} is the sum of the degrees of the graph; by a theorem in class, this is twice the number of edges or $2 m$.

