Basic Combinatorics (Math 40210) Sec 01, Fall 2012, Quiz 1

Solutions

1. For the graph G drawn below, write down an a-d walk that is not a path.

Solution: any walk along edges of the graph that starts at a, ends at d, and repeats an edge and/or a vertex will do. For example, a - e - f - a - e - d.

2. Draw the complement \overline{G} of G (the graph shown *above*), using the picture below as a starting point. Is \overline{G} bipartite? If it is, write down a valid partition $X \cup Y$ of the vertex set. If it is not, say why not.

Solution: \overline{G} is bipartite: setting $X = \{e, e, f\}$ and $Y = \{b, c, d\}$, we have no X - X or Y - Y edges (and all vertices covered, and X and Y disjoint).

3. The *trace* of an *n* by *n* matrix *A*, denoted by Tr(A), is the sum of the entries down the main diagonal (so for example $\text{Tr}\begin{pmatrix} 2 & 1 \\ 5 & 7 \end{pmatrix} = 9$). Show that for any graph with *m* edges and with adjacency matrix *A*, $\text{Tr}(A^2) = 2m$.

Solution: The *ii* entry of A^2 counts the number of walks of length 2 that start and end at vertex *i*; this is exactly d(i), the degree of *i* (one such walk for each edge). So the trace of A^2 is the sum of the degrees of the graph; by a theorem in class, this is twice the number of edges or 2m.