Basic Combinatorics

Math 40210, Section 01 - Fall 2012

Homework 9 - Solutions

- 2.6.2 1:

$$
\begin{aligned}
\binom{\alpha-1}{k}+\binom{\alpha-1}{k-1} & =\frac{(\alpha-1)(\alpha-2) \ldots(\alpha-k)}{k!}+\frac{(\alpha-1)(\alpha-2) \ldots(\alpha-k+1)}{(k-1)!} \\
& =\left(\frac{(\alpha-1)(\alpha-2) \ldots(\alpha-k+1)}{(k-1)!}\right)\left(\frac{\alpha-k}{k}+1\right) \\
& =\left(\frac{(\alpha-1)(\alpha-2) \ldots(\alpha-k+1)}{(k-1)!}\right)\left(\frac{\alpha}{k}\right) \\
& =\frac{\alpha(\alpha-1)(\alpha-2) \ldots(\alpha-k+1)}{k!} \\
& =\binom{\alpha}{k} .
\end{aligned}
$$

- 2.6.2 6: In this question we use the basic fact, derived in class and in the textbook, that the number of ways to place m identical objects into n distinguishable bins is the same as the number of ways to select m objects from a set of n different types of objects with repetition allowed, and in both cases the answer is $\binom{n+m-1}{m}$.
- 2.6.2 6a: Here we are placing $m=50$ identical objects (the burgers) into $n=20$ distinguishable bins (the guests), so there are $\binom{20+50-1}{50}=\binom{69}{50}$ ways.
- 2.6.2 6b: One each guest has received one burger each, there are $m=30$ left over, which must be distributed among $n=20$ guests, so there are $\binom{20+30-1}{30}=\binom{49}{30}$ ways.
- 2.6.2 6c: In the first part, there are 51 possibilities for the number k of burgers left over. If k are left over, then we are dealing with the problem $m=50-k$ and $n=20$, leading to a count of $\binom{20+50-k-1}{50-k}=\binom{69-k}{50-k}$. So the total count is

$$
\sum_{k=0}^{50}\binom{69-k}{50-k}
$$

In the second part, again we start by giving each guest one vertex each. Then there are 31 possibilities for the number k of burgers left over when the balance is distributed. If k are
left over, then we are dealing with the problem $m=30-k$ and $n=20$, leading to a count of $\binom{20+30-k-1}{30-k}=\binom{49-k}{30-k}$. So the total count is

$$
\sum_{k=0}^{30}\binom{49-k}{30-k}
$$

There's a "trick" way to do both of these parts: introduce a phantom 21st guest to receive the unused burgers. In the first part we are now dealing with the $m=50, n=21$ problem, so there are $\binom{21+50-1}{50}=\binom{70}{50}$ ways. In the second part we are dealing with the $m=30, n=21$ problem, so there are $\binom{21+30-1}{30}=\binom{50}{30}$ ways.

General comment: We have just given a combinatorial proof of the following identity: for all m, n,

$$
\sum_{k=0}^{m}\binom{n+m-k-1}{m-k}=\binom{n+m}{m} .
$$

This is identical to

$$
\sum_{k=0}^{m}\binom{n+k-1}{k}=\binom{n+m}{m}
$$

which is a more standard way to present this identity.

- 2.6.4 1(d): Experiment suggests $F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}$. We prove this by induction on n. Base case is $n=1$, which is trivial. We now try to deduce the $n+1$ case from the n case. The trick is to find exactly the right terms to apply the Fibonacci recurrence to:

$$
\begin{aligned}
F_{(n+1)+1} F_{(n+1)-1}-F_{n+1}^{2} & =F_{n+2} F_{n}-F_{n+1}^{2} \\
& =\left(F_{n+1}+F_{n}\right) F_{n}-\left(F_{n}+F_{n-1}\right) F_{n+1} \\
& =F_{n+1} F_{n}+F_{n}^{2}-F_{n} F_{n+1}-F_{n-1} F_{n+1} \\
& =-\left(F_{n+1} F_{n-1}-F_{n}^{2}\right) \\
& =-(-1)^{n} \quad \text { induction hypothesis) } \\
& =(-1)^{n+1},
\end{aligned}
$$

as required.

- 2.6.4 3: Form generating function:

$$
\begin{aligned}
A(x) & =5 x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& =5 x+\left(a_{1}+6 a_{0}\right) x^{2}+\left(a_{2}+6 a_{1}\right) x^{3}+\ldots \\
& =5 x+x\left(a_{1} x+a_{2} x^{2}+\ldots\right)+6 x^{2}\left(a_{0}+a_{1} x+\ldots\right) \\
& =5 x+x A(x)+6 x^{2} A_{x} .
\end{aligned}
$$

So

$$
A(x)=\frac{5 x}{1-x-6 x^{2}}=\frac{5 x}{(1+2 x)(1-3 x)}=\frac{1}{1-3 x}-\frac{1}{1+2 x}
$$

and $a_{n}=3^{n}-(-1)^{n} 2^{n}$.

- 2.6.4 5(d): Induction on n, base case $n=0$ trivial. For the induction step:

$$
\begin{aligned}
\sum_{k=0}^{n+1} F_{k}^{2} & =\left(\sum_{k=0}^{n} F_{k}^{2}\right)+F_{n+1}^{2} \\
& =F_{n} F_{n+1}+F_{n+1}^{2} \quad \text { (induction hypothesis) } \\
& =\left(F_{n}+F_{n+1}\right) F_{n+1} \\
& =F_{n+2} F_{n+1} \\
& =F_{(n+1)+1} F_{n+1}
\end{aligned}
$$

as required.

- 2.6.4 8(a): We prove this by induction on n, the base cases $n=1$ and 2 being trivial. For the induction step:

$$
\begin{aligned}
L_{n+1} & =L_{n}+L_{n-1} \\
& =\left(F_{n+1}+F_{n-1}\right)+\left(F_{n}+F_{n-2}\right) \quad \text { (inductive hypothesis) } \\
& =\left(F_{n+1}+F_{n}\right)+\left(F_{n-1}+F_{n-2}\right) \\
& =F_{n+2}+F_{n},
\end{aligned}
$$

as required. Notice that base cases $n=1,2$ need to be verified here, since the induction hypothesis is applied both to L_{n} and L_{n-1}.

- 2.6.4 10: Let h_{n} be the number of hopscotch boards with n squares. It's clear that $h_{0}=1$ and $h_{1}=1$. For $n \geq 2$, there are h_{n-1} boards that begin with a single-square position (once that square had been put down, it can be completed to a legitimate board by the addition of any $(n-1)$-square board), and there are h_{n-2} boards that begin with a two-square position. So $h_{n}=h_{n-1}+h_{n-2}$ for $n \geq 2$. The h 's are thus just a "shifted" Fibonacci sequence: $h_{n}=F_{n+1}$.
- 2.6.4 11: From the preceding problem, F_{n} is the number of hopscotch boards with $n-1$ squares. How many such Hopscotch boards have exactly k two-square positions? The k twosquare positions account for $2 k$ of the squares, leaving $n-1-2 k$ single-square positions, so ($n-1-2 k+k=n-k-1$ positions in all. To construct an $(n-1)$-square Hopscotch board with exactly k two-square positions, we just select which k of the $n-k-1$ positions are the two-square ones, so $\binom{n-k-1}{k}$ choices in all. Summing over all possible k we get the total number of $(n-1)$-square Hopscotch boards:

$$
h_{n-1}=F_{n}=\sum_{k}\binom{n-k-1}{k} .
$$

(Practically, k goes from 0 to the last k with $2 k \leq n-1$, but for any other k the binomial coefficient is automatically zero, so we might as well sum over all k).

- 2.6.5 2(a): Form generating function:

$$
\begin{aligned}
A(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\ldots \\
& =a_{0}+\left(a_{0}+c\right) x+\left(a_{1}+c\right) x^{2}+\ldots \\
& =a_{0}+x\left(a_{0}+a_{1} x+\ldots\right)+c x\left(1+x+x^{2} \ldots\right) \\
& =a_{0}+x A(x)+\frac{c x}{1-x} .
\end{aligned}
$$

So

$$
A(x)=\frac{a_{0}}{1-x}+\frac{c x}{(1-x)^{2}} .
$$

The coefficient of x^{n} in $a_{0} /(1-x)$ is a_{0} times the coefficient of x^{n} in $1 /(1-x)$, which is a_{0} times 1 or a_{0}. The coefficient of x^{n} in $c x /(1-x)^{2}$ is c times the coefficient of x^{n} in $x /(1-x)^{2}$, which is c times n or $c n$ (this is equation (2.44) of the book, on page 183). So

$$
a_{n}=a_{0}+c n .
$$

- 2.6.5 2(e): Form generating function:

$$
\begin{aligned}
A(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\ldots \\
& =a_{0}+\left(b a_{0}+c\right) x+\left(b a_{1}+2 c\right) x^{2}+\left(b a_{2}+3 c\right) x^{3}+\ldots \\
& =a_{0}+b x\left(a_{0}+a_{1} x+\ldots\right)+c x\left(1+2 x+3 x^{2}+\ldots\right) \\
& =a_{0}+b x A(x)+\frac{c x}{(1-x)^{2}} .
\end{aligned}
$$

(The last part above is obtained either by noticing that the derivative of $1 /(1-x)$ is $1 /(1-x)^{2}$, and that the derivative of $1+x+x^{2}+\ldots$, the power series of $1 /(1-x)$, is $1+2 x+3 x^{2}+\ldots$, so this must be the power series of $1 /(1-x)^{2}$; or by using equation (2.44) of the text on page 183). So

$$
A(x)=\frac{a_{0}}{1-b x}+\frac{c x}{(1-b x)(1-x)^{2}}
$$

We use partial fractions for the second term. Since $b \neq 1$ we write

$$
\frac{c x}{(1-b x)(1-x)^{2}}=\frac{A}{1-b x}+\frac{B}{1-x}+\frac{C}{(1-x)^{2}}
$$

and solve to get

$$
A=\frac{b c}{(1-b)^{2}}, \quad B=\frac{-c}{1-b}, \quad C=\frac{1}{1-b},
$$

so

$$
A(x)=\frac{a_{0}}{1-b x}+\left(\frac{b c}{(1-b)^{2}}\right) \frac{1}{1-b x}-\left(\frac{c}{1-b}\right) \frac{1}{1-x}+\left(\frac{c}{1-b}\right) \frac{1}{(1-x)^{2}}
$$

and

$$
a_{n}=a_{0} b^{n}+\left(\frac{b c}{(1-b)^{2}}\right) b^{n}+\left(\frac{c}{1-b}\right)+(n+1)\left(\frac{c}{1-b}\right)
$$

(the last part using the equation before (2.44) of the book, on page 183).

- 2.6.5 7(a): $t_{0}=1, t_{1}=2, t_{2}=4, t_{3}=7$ (in this last case, only 111 is left out). For a recurrence: consider how the sequence starts - with a 0 , with 10 , or with with 110 (it can't start with anything other than these three possibilities). This lets us say

$$
t_{n}=t_{n_{1}}+t_{n-2}+t_{n-3}
$$

We can use this for $n \geq 3$, since it already gives $t_{3}=7$.

- 2.6.5 7(b): Here's the generating function of the t 's:

$$
\begin{aligned}
T(x) & =t_{0}+t_{1} x+t_{2} x^{2}+t_{3} x^{3}+t_{4} x^{4}+\ldots \\
& =1+2 x+4 x^{2}+\left(t_{2}+t_{1}+t_{0}\right) x^{3}+\left(t_{3}+t_{2}+t_{1}\right) x^{4}+\ldots \\
& =1+2 x+4 x^{2}+x(T(x)-2 x-1)+x^{2}(T(x)-1)+x^{3} T(x)
\end{aligned}
$$

so

$$
T(x)=\frac{1+x+x^{2}}{1-x-x^{2}-x^{3}} .
$$

- 2.6.5 7(c): Here's the generating function of the t^{\star} 's:

$$
\begin{aligned}
T^{\star}(x) & =t_{0}^{\star}+t_{1}^{\star} x+t_{2}^{\star} x^{2}+t_{3}^{\star} x^{3}+\ldots \\
& =x^{2}+t_{0} x^{3}+t_{1} x^{4}+\ldots \\
& =x^{2}+x^{3} T(x) \\
& =x^{2}+\frac{x^{3}+x^{4}+x^{5}}{1-x-x^{2}-x^{3}} \\
& =\frac{x^{2}}{1-x-x^{2}-x^{3}}
\end{aligned}
$$

- 2.6.6 3(a): $p_{3}=1, p_{4}=2, p_{5}=5, p_{6}=14$. Pictures of p_{3} through p_{5} are easy to come up with; for p_{6}, see a picture at http://en.wikipedia.org/wiki/Catalan_number in the section "Applications in Combinatorics".
- 2.6.6 3(b): For p_{7}, if the vertices are labeled cyclicly 1 through n, and vertex 1 is not an endpoint of one of the the triangulation edges, then there must be an edge from 7 to 2 , and there are p_{6} ways to complete the triangulation.

If 1 is in an edge, and the earliest (in numerical order) vertex that it's joined to by one of the triangulation edges is 3 then there is one way to complete the triangulation on the 123 side, and p_{6} ways on the 345671 side.

If 1 is in an edge, and the earliest vertex that it's joined to by one of the triangulation edges is 4 then there is one way to complete the triangulation on the 1234 side, and p_{5} ways on the 45671 side.
If 1 is in an edge, and the earliest vertex that it's joined to by one of the triangulation edges is 5 then there are two ways to complete the triangulation on each side of the 15 edge, independently.

If 1 is in an edge, and the earliest (in numerical order) vertex that it's joined to by one of the triangulation edges is 6 then there is one way to complete the triangulation on the 671 side, and p_{5} ways on the 123456 side (26 must be an edge, since 1 can't be joined to 3,4 or 5).
This gives a total of $p_{6}+p_{6}+p_{5}+2 * 2+p_{5}=42 . \mathrm{S} 0 p_{7}=42$.

- 2.6.6 3(c): The last part suggests a general strategy for counting p_{n}. We look at the earliest vertex (in numerical order) that 1 is joined to by an edge of the triangulation. If that vertex is 3 (the smallest possible) then there is 1 way to complete to triangulation on the 123 side (it's already completed!) and p_{n-1} ways on the other side.
If the earliest vertex joined to 1 is k for some $n-1 \leq k>3$, then, since 1 cannot be joined to any of 3 through $k-1$, it must be that to triangulate the $12 \ldots k$ side we have an edge from 2 to k, leaving p_{k-1} completions on the polygon $23 \ldots k$. On the other side ($k \ldots 1$) there are p_{n-k+2} triangulations (since what's left is a ($n-k+2$)-sided polygon), and these triangulations can be done independently of the triangulations of the $12 \ldots k$ side, giving $p_{k-1} p_{n-k+2}$ in all.
Finally, if 1 is not an endpoint of one of the the triangulation edges, then there must be an edge from n to 2 , and there are p_{n-1} ways to complete the triangulation.
We get the recurrence: $p_{3}=1$ and for $n \geq 3$,

$$
p_{n}=p_{n-1}+p_{3} p_{n-2}+p_{4} p_{n-3}+\ldots+p_{n-2} p_{3}+p_{n-1} .
$$

Defining $p_{2}=1$, this can also be written as $p_{2}=1$ and for $n \geq 3$,

$$
p_{n}=p_{2} p_{n-1}+p_{3} p_{n-2}+p_{4} p_{n-3}+\ldots+p_{n-2} p_{3}+p_{n-1} p_{2}
$$

Setting $p_{n+2}=c_{n}$, this becomes: $c_{0}=1$ and for $n \geq 1$,

$$
c_{n}=c_{0} c_{n-1}+c_{1} c_{n-2}+c_{2} c_{n-3}+\ldots+c_{n-2} c_{1}+c_{n-1} c_{0} .
$$

This is the Catalan recurrence exactly, so

$$
c_{n}=\frac{\binom{2 n}{n}}{n+1}, \quad p_{n}=\frac{\binom{2 n-4}{n-2}}{n-1}
$$

- 2.6.6 5: If we interpret UP steps as runs scored by White Sox, and DOWN steps as runs scored by Cubs, then a mountain ridgeline is exactly a game between the teams that ends in an $n-n$ tie and in which the Cubs never hold the lead, so r_{n} is exactly the nth Catalan number, as we discussed in class.
- 2.6.6 8: The prime number p divides k ! exactly

$$
\left[\frac{k}{p}\right]+\left[\frac{k}{p^{2}}\right]+\left[\frac{k}{p^{3}}\right]+\ldots
$$

times, where $[x]$ is the greatest integer less than or equal to x. The term $[k / p]$ counts the number of multiples of p that are at most k; each of these contributes a factor of p; the term
[k / p^{2}] counts the number of multiples of p^{2} that are at most k; each of these contributes a new factor of p that wasn't counted in the first term; and so on. Notice that the sum can be thought of as an infinite one: as soon as we get to a term $\left[k / p^{\ell}\right]$ where p^{ℓ} is greater than k, we just start getting 0 's.
So, for each prime p, the number of times it divides $(2 k)$! is exactly

$$
\left[\frac{2 k}{p}\right]+\left[\frac{2 k}{p^{2}}\right]+\left[\frac{2 k}{p^{3}}\right]+\ldots
$$

the number of times it divides $k!(k+1)$! is exactly

$$
\left(\left[\frac{k}{p}\right]+\left[\frac{k}{p^{2}}\right]+\left[\frac{k}{p^{3}}\right]+\ldots\right)+\left(\left[\frac{k+1}{p}\right]+\left[\frac{k+1}{p^{2}}\right]+\left[\frac{k+1}{p^{3}}\right]+\ldots\right) .
$$

To show that $(2 k)!/(k!(k+1)!)$ is an integer, we need to show that for every prime p, the first expression is at least as big as the second.
It is enough to show that for all integers $\alpha \geq 1$ and all k and p (a prime),

$$
\left[\frac{2 k}{p^{\alpha}}\right] \geq\left[\frac{k}{p^{\alpha}}\right]+\left[\frac{k+1}{p^{\alpha}}\right]
$$

Let's say $k / p^{\alpha}=m p^{\alpha}+r$ where $0 \leq r \leq p^{\alpha}-1$. Then $2 k / p^{\alpha}=2 m p^{\alpha}+2 r$. and $(k+1) / p^{\alpha}=m p^{\alpha}+r+1$. We have

$$
\begin{gathered}
{\left[\frac{2 k}{p^{\alpha}}\right]=\left\{\begin{array}{cc}
2 m & \text { if } 2 r<p^{\alpha} \\
2 m+1 & \text { if } 2 r \geq p^{\alpha},
\end{array}\right.} \\
{\left[\frac{k+1}{p^{\alpha}}\right]=\left\{\begin{array}{cc}
m+1 & \text { if } r=p^{\alpha}-1 \\
m & \text { othetrwise },
\end{array}\right.}
\end{gathered}
$$

and

$$
\left[\frac{k}{p^{\alpha}}\right]=m .
$$

The only way it can happen that

$$
\left[\frac{2 k}{p^{\alpha}}\right]<\left[\frac{k}{p^{\alpha}}\right]+\left[\frac{k+1}{p^{\alpha}}\right]
$$

is when $r=p^{\alpha}-1$ and $2 r<p^{\alpha}$; but this can only happen if $p^{\alpha}<2$, which cannot happen since p is a prime, so ≥ 2, and $\alpha \geq 1$. So we are done.

