
Basic Combinatorics

Math 40210, Section 01 — Fall 2012

Homework 8 — Solutions

• 1.8.1 1: Kn has
(
n
2

)
edges, each one of which can be given one of two colors; so Kn has 2(

n
2)

2-edge-colorings.

• 1.8.1 3: Let χ : E(Kk) → {r, b} be a 2-colouring of the edges of Kk with two colors, r and
b. We want to show that either there is a complete subgraph on 2 vertices, all of whose edges
are colored r, or a complete subgraph on k vertices, all of whose edges are colored b. If there
is even a single edge coloured r, we have the first. If not, then all edges are colored blue,
and we have the second. This shows that R(2, k) ≤ k. To see that R(2, k) = k, we exhibit a
2-coloring of the edges of Kk−1 that contains neither a complete subgraph on 2 vertices, all
of whose edges are colored r, or a complete subgraph on k vertices, all of whose edges are
colored b. This is easy: take the coloring in which every edge is coloured b.

• 1.8.1 5: First the inequality. If R(p, q) = N , then every 2-colouring of the edges of KN

with two colors, r and b contains either a complete subgraph on p vertices, all of whose
edges are colored r, or a complete subgraph on q vertices, all of whose edges are colored
b. If the former, then it contains a complete subgraph on p′ vertices, all of whose edges are
colored r (just take any p′ vertices from the totally-r-colored Kp), or a complete subgraph on
q′ vertices, all of whose edges are colored b. So R(p′, q′) ≤ N .

Next, the strictness. Suppose at least one of p′ = p, q′ = q fails. Without loss of generality,
p′ < p. Suppose, for a contradiction, that R(p′, q′) = R(p, q) = N . This means that there
exists a 2-colouring of the edges of KN−1 which contains neither a complete subgraph on
p′ vertices, all of whose edges are colored r, or a complete subgraph on q′ vertices, all of
whose edges are colored b. To this graph, add an N th vertex, and join it all of the N − 1
existing vertices with an edge colored r. The resulting 2-coloring of the edges ofKN does not
contain a complete subgraph on p′+1 vertices, all of whose edges are colored r (if it did, the
original coloring would have contained a complete subgraph on p′ vertices, all of whose edges
are colored r); so, since p′ < p, the coloring just constructed does not contain a complete
subgraph on p vertices, all of whose edges are colored r. Nor does it contain a complete
subgraph on q′ vertices, all of whose edges are colored b (if it did, the original coloring
would have contained a complete subgraph on q′ vertices, all of whose edges are colored b);
so, since q′ ≤ q, the coloring just constructed does not contain a complete subgraph on q
vertices, all of whose edges are colored b. It follows that R(p, q) > N , a contradiction.
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• 1.8.2 5: We proceed by induction on q. The base case is

R(3, 3) ≤ 32 + 3

2
= 6,

which is true (in fact, R(3, 3) = 6).

For the induction step, fix q > 3. We have

R(3, q) ≤ R(2, q) +R(3, q − 1) (Theorem 1.64)

≤ q +
(q − 1)2 + 3

2
(An easy fact, and induction)

≤ q2 + 4

2
(Combining).

This does not seem to do the job! But, part of Theorem 1.64 is that if both terms on the
right-hand side are even, then the inequality is strict. We repeat the induction using this fact.
If q (and so R(2, q) = q) is even, and also R(3, q − 1) is even, then we can put a −1 on the
right-hand side of each inequality above, and we end up getting

R(3, q) ≤ q2 + 2

2
≤ q2 + 3

2
.

If, on the other hand, q is even but R(3, q − 1) is odd, then note the following: (q − 1)2

leaves a remainder of 1 on division by 4 (to check this, look at (2k − 1)2 = 4k2 − 4k + 1),
so (q − 1)2 + 3 leaves a remainder of 0 on division by 4, so ((q − 1)2 + 3)/2 is even. So
in this case, we may, knowing that R(3, q − 1) is odd, replace the inductive upper bound by
(q−1)2+3

2
− 1, which again leads us to a good bound in the end.

What is q is odd? Then our upper bound for R(3, q − 1), namely (q−1)2+3
2

, is not an integer
(it’s an integer plus 1/2). So we may replace it by (q−1)2+3

2
− 1/2, leading to

R(3, q) ≤ q2 + 3

2
.

• 2.4 3: The question as asked is a little hard to follow. Here’s a rephrasing: if you have
n pigeonholes, labeled 1 through n, and pigeonhole i has “capacity” mi, then if you have
M = m1 + . . . +mn − n + 1 pigeons distributed among the pigeonhole, there must be one
pigeonhole that is filled to capacity (at least). In the usual pigeonhole principle each of the
mi’s are 2, and M becomes 2n− n+ 1 = n+ 1.

The proof is easy: if, for each i, pigeonhole i gets fewer than mi pigeons, then it gets at most
mi− 1, so the total number of pigeons accounted for is at most (m1− 1)+ . . .+(mn− 1) =
m1 + . . . +mn − n = M − 1. So with M pigeons, we must have at least one i with the ith
pigeonhole having at least mi pigeons.

• 2.4 4: The best pitcher has the most possible strikeouts when the other three have the mini-
mum possible, that is 40; in this case the best pitcher has 177 strikeouts. The best pitcher has
the least possible strikeouts when the worst pitcher has the least possible number, that is 49,
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and the remaining 248 are distributed as near equally as possible among the remaining three,
that is 82, 83 and 83.

So the range of possible strikeouts for the best pitcher is between 83 and 177.

• 2.4 5: The question must mean that we take the sum of difference of two distinct numbers;
if we are allowed to take the difference or sum of a single number with itself, the answer is
trivially m = 1, since any number x has x− x = 0, a multiple of 10.

The 6 numbers 0,1,2,3,4,5 show that we need at least m = 7. To see that m = 7 makes the
statement valid, create 6 pigeonholes, labeled by:

1. ends with a 0 or (that is, has 0 as last digit in decimal representation)

2. ends with a 1 or a 9

3. ends with a 2 or an 8

4. ends with a 3 or a 7

5. ends with a 4 or a 6

6. ends with a 5.

If two numbers end up in the same pigeonhole, either their sum or their difference is a mul-
tiple of 10; so by the pigeonhole principle we can certainly take m = 7.

• 2.4 7: Label the numbers, in the order they appear around the circle, a1, a2, . . ., an (so a1 is
beside an). If you look at the numbers in consecutive blocks of length k, going the whole
way around the circle, then each number appears exactly k times. So if you sum up all
the numbers that appear in these blocks (counting as different appearances of numbers in
different blocks), you get a sum of exactly

k(a1 + . . .+ an) = k(1 + 2 + . . .+ n) =
kn(n+ 1)

2
.

That means that the average sum of a consecutive block of k is exactly k(n + 1)/2. Since
at least one number in a sequence must be as least as large as the average, there must be at
least one block of length k whose sum is at least k(n+ 1)/2. But since the sums must all be
integers, this large sum must be at least the first integer that is at least as large as k(n+1)/2,
that is dk(n+ 1)/2e.

• 2.4 10: Here’s one possible arrangement: take all numbers between 1 and mn that leave a
remainder of 1 on division by m, and list them in decreasing order; then take all numbers
that leave a remainder of 2 on division by m, and list them in decreasing order; and so on,
all the way to all numbers that leave a remainder of m − 1 on division by m, and finally all
numbers that leave a remainder of 0 on division by m, always listing the block of numbers in
decreasing order. Here’s what this looks like for n = 5 and m = 5:

21 16 11 6 1
22 17 12 7 2
23 18 13 8 3
24 19 14 9 4
25 20 15 10 5.
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An increasing sequence can only take one number from each row, so there can be at most m
terms in it; a decreasing sequence can only take one number from each column, so there can
be at most n terms in it.

• 2.4 13: This is a classic pigeonhole problem that is easy once you know the solution, but
coming up with the solution is quite tough.

Consider the n sums:
a1
a1 + a2
a1 + a2 + a3
. . .
a1 + a2 + . . .+ an.

If one of these is a multiple of n, we are done. If not, these are n sums that are shared between
n− 1 remainders on division by n. By the pigeonhole principle, two of them, a1 + . . . a` and
a1 + . . .+ ak (with, wlog, k > `), have the same remainder on division by n. If follows that
the difference between these two sums is a multiple of n, that is, a`+1+ . . .+ ak is a multiple
of n, and we are done.

• 2.5 1: S is set of all flags, AB those with blue background, AS those with stripes, AP those
with plant or animal. Know:

|S| = 50

|AB| = 30; |AS| = 12; |AP | = 26

|AB ∩ AS| = 9; |AB ∩ AP | = 23; |AS ∩ AP | = 3

|AB ∩ AS ∩ AP | = 2

We want to find |(AB ∩ AP ∩ AS)
c|. A direct application of Inclusion-exclusion yields:

|(AB ∩ AP ∩ AS)
c| = 50− (30 + 12 + 26) + (9 + 23 + 3)− 2

= 15.

• 2.5 6: Let AS , AC , AH and AD denote, respectively, the number of five cards hands that
don’t include a spade, club, heart or diamond. The size of each of these sets is

(
39
5

)
(for AS ,

for example, we have to choose the five cards from among the 39 non-spades). The size of
the intersection of any two of these sets is

(
26
5

)
(for AS ∩AC , for example, we have to choose

the five cards from among the 26 non-black-cards). The size of the intersection of any three
of these sets is

(
13
5

)
, and the size of the intersection of all four is

(
0
5

)
= 0. Inclusion-exclusion

gives that the number of five-card hands with at least one from each suit is

|(AC ∩ AS ∩ AH ∩ AD)
c| =

(
52

5

)
− 4

(
39

5

)
+ 6

(
26

5

)
− 4

(
13

5

)
+ 0

= 685464.

This is about 26% or all five-card hands.
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• 2.5 7: In general when we expand out a product of the form
r∏

i=1

(ai + bi)

we get a sum of the form ∑
S⊆{1,...,r}

∏
i∈S

bi
∏
i 6∈S

ai.

This is because to get a term in the expanded sum, we have to make a choice for each of the
r terms in the product: do we take the bi or the ai? We can encode the choices we made for
a particular term by a subset S of {1, . . . , r} corresponding to where we made the choices of
bi’s; each of the 2r subsets leads to a different term of the expanded sum.

In this case, each ai equals 1, and each bi equals −αi. The term corresponding to the empty
set is exactly 1; the term corresponding to a set S = {i} is exactly −αi and we have one for
each i; the term corresponding to a set S = {i, j} with i < j is exactly −αiαj and we have
one for each i < j; the term corresponding to a set S = {i, j, k} with i < j < k is exactly
−αiαjαk and we have one for each i < j < k, and so on up to the term corresponding to
S = {1, . . . , r}, which is (−1)rα1 . . . αr.

• 2.5 8a: If m and n are relatively prime we have

m = pa11 . . . parr

and
n = qb11 . . . qbss

with no primes in common among the p’s and q’s. So the prime factorization of mn is

mn = pa11 . . . parr q
b1
1 . . . qbss .

By our formula for the φ function we have

φ(mn) = mn

(
1− 1

p1

)
. . .

(
1− 1

pr

)(
1− 1

q1

)
. . .

(
1− 1

qs

)
= m

(
1− 1

p1

)
. . .

(
1− 1

pr

)
n

(
1− 1

q1

)
. . .

(
1− 1

qs

)
= φ(m)φ(n).

• 2.5 8b: If m and n are not relatively prime, then in the notation of the last solution there is at
least one coincidence between the p’ and the q’s. We still have

φ(m)φ(n) = mn

(
1− 1

p1

)
. . .

(
1− 1

pr

)(
1− 1

q1

)
. . .

(
1− 1

qs

)
,

but φ(mn) is missing at least one of the terms or the form (1−1/pi) (if p1 = q1, for example,
we would include (1− 1/q1) in calculating φ(mn), but not (1− 1/p1), since this would lead
to an unwanted duplication). This shows that the two sides are not equal. Since φ(mn) is
missing multiplicative term that is less than 1, we specifically have

φ(mn) > φ(m)φ(n).
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• 2.5 8c: I won’t give the answer to this, but I will outline the strategy that makes solving the
problem “find all n such that φ(n) = x” a finite process. If n = pa11 . . . parr with p1 < p2 <
p3 . . . < pr then

φ(n) = n

(
1− 1

p1

)
. . .

(
1− 1

pr

)
= pa1−11 (p1 − 1) . . . par−1r (pr − 1).

For φ(n) to equal x, we must have

x = pa1−11 (p1 − 1) . . . par−1r (pr − 1).

In particular this means that (p1−1)(p2−1) . . . (pr−1) must divide x. There are only finitely
many ways to choose p1 < p2 < . . . < pr primes with this happening (no prime larger than x
need ever be considered). For each choice of p1 < . . . < pr with (p1−1)(p2−1) . . . (pr−1) ≤
x, check does it divide x. If it does, check does the quotient only have p1, p2, . . . pr as factors.
If so, say the quotient is pb11 . . . p

br
r , then the number

n = pb1+1
1 . . . pbr+1

r

has φ(n) = x.

It is clear that it is a finite, if tedious, process to find all such n for a given x

• 2.5 10a: As we derived in class using inclusion-exclusion,

PG(q) =
∑

T⊆E(G)

(−1)|T |qc(T )

where PG(q) is the chromatic polynomial, E(G) is the set of edges of G and c(T ) is the
number of components in the subgraph created by only looking at the edge set T . Applying
this to the yield sign, which has 4 edges, there will be 16 terms in the sum (one for each
subset of the edges). We have to look at each subset T and see a) what is the sign of (−1)|T |)
and b) what is c(T ). For example, the three edges that form a triangle have (−1)|T | = −1
and c(T ) = 2, so this subset will contribute −q2 to the sum. Running over all 16 subsets in
this way and grouping equal powers we get

pG(q) = q4 − 4q3 + 5q2 − 2q.

We could also get this directly: there are q(q − 1)(q − 2) q-colorings of the triangle (as we
discussed in class), and each one of these rules out exactly one color for the last vertex, so
there are q(q − 1)(q − 2)(q − 1) q-colorings of the whole graph. Expanded out, this is the
same as the expression above.

• 2.5 10b: Using the same technique as for the last part, we find after looking at all 26 subsets
of edges and gathering terms that

pG(q) = q5 − 6q4 + 15q3 − 17q2 + 7q.

Unlike the previous part, there is no quick way to see this.
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• 2.5 12a: T0 = 0, T1 = 0, T2 = 4, T3 = 24

• 2.5 12b: Without loss of generality suppose that the 6 people are seated as follows: seat 1
has twin 1, seat 2 has twin 2, seat 3 has person 1, seat 4 has person 2, seat 5 has person 3, seat
six has person 4. In a valid derangement of the kind required in the question, there are four
choice for twin 1 (seats 3 through 6) and subsequently three for twin 2 (the three empty seats
from seats 3 through 6 remaining after twin 1 has chosen his seat); so there are 12 choices for
twins 1 and 2 together. By symmetry each of these will look the same in terms of how many
possibilities there are for seating the remaining people, so assume wlog that twins 1 and 2
occupy seats 5 and 6. We now must distribute persons 1 through 4 among seats 1 through 4,
not allowing person 1 to sit in seat 3 or person two to sit in seat 4. By inspection there are 14
ways to do this, so T4 = 12 ∗ 14 = 168.

• 2.5 12c: The way we counted T4 suggests a general strategy. Suppose that the n + 2 people
are seated as follows: person i in seat i for i = 1, . . . , n, and twin 1 in seat n + 1, twin 2 in
seat n+2. In a valid derangement of the kind required in the question, there are n choices for
twin 1 (seats 1 through n) and subsequently n−1 for twin 2 (the n−1 empty seats from seats
1 through n remaining after twin 1 has chosen his seat); so there are n(n − 1) choices for
twins 1 and 2 together. By symmetry each of these will look the same in terms of how many
possibilities there are for seating the remaining people, so assume wlog that twins 1 and 2
occupy seats 1 and 2. We now must distribute persons 1 through n among seats 3 through
n+ 2, not allowing person i to sit in seat i for i = 3, . . . , n (persons 1 and 2 are ok; they will
never sit in their own seats given where twins 1 and 2 went).

By renaming seats n + 1 and n + 2 to be seats 1 and 2, this is the same as rearranging 1
through n in such a way that 3 through n do not go to their original positions, but perhaps 1
and 2 do. Reproducing our count of derangements from class (or page 160 of the textbook)
the count turns out to be

n!−
(
n− 2

1

)
(n− 1)! +

(
n− 2

2

)
(n− 2)! + . . .+ (−1)n−22!.

So

Tn = n(n− 1)

(
n!−

(
n− 2

1

)
(n− 1)! +

(
n− 2

2

)
(n− 2)! + . . .+ (−1)n−22!

)
.

Plugging into Wolfram alpha, I get T10 = 145510740, which is twice the claimed value. I
think that this may be a mistake on the book’s part, as the formula above agrees with my
computed values of T0 through T4.

• 2.5 12d: The compact (summation form) expression for Tn above is

Tn =
n−2∑
k=0

n(n− 1)(−1)k
(
n− 2

k

)
(n− k)!.
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So

Tn
(n+ 2)!

=
n−2∑
k=0

1

(n+ 2)!
n(n− 1)(−1)k

(
n− 2

k

)
(n− k)!

=
n−2∑
k=0

(−1)kn(n− 1)(n− 2)!(n− k)!
k!(n− 2− k)!(n+ 2)!

=
n−2∑
k=0

(−1)k (n− k)(n− k − 1)

k!(n+ 2)(n+ 1)
.

It’s not too easy to compute the above limit (one has to do some very careful analysis), but it
turns out to be 1/e.

• For all n ≥ 3, the chromatic polynomial of Cn is

PCn(q) = (q − 1)n + (−1)n(q − 1).

Proof: By inclusion-exclusion we have

PCn(q) =
∑

S⊆E(Cn)

(−1)|S|qc(S).

When S = ∅ we get qn. When |S| = k for k = 1, . . . , n − 1, the subgraph induced by S is
a forest. In a previous exercise we showed that a forest with ` components always has n− `
edges; here k = n − `, so the forest has n − k components, and so for each possible choice
of k edges we get a contribution to the sum of (−1)kqn−k. There are

(
n
k

)
choices of k edges

for S; so the contribution to the sum from all S with |S| < n is

n−1∑
k=0

(
n

k

)
(−1)kqn−k = (−1 + q)n − (−1)n.

From S = E(Cn) there is a contribution of (−1)nq, so in all we get

PCn(q) = (−1 + q)n − (−1)n + (−1)nq = (q − 1)n + (−1)n(q − 1),

as claimed.
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