Basic Combinatorics

Math 40210, Section 01 - Fall 2012
Homework 8 - due Friday, November 16

General information: I encourage you to talk with your colleagues about homework problems, but your final write-up must be your own work.

You should present your final homework solutions clearly and neatly. Keep in mind that when you write a homework solution, you are trying to communicate the solution to someone other than yourself, so incomplete sentences and personal shorthand is not helpful!

Due to manpower issues, I will only grade selected homework problems, but I plan to quickly post solutions to all the problems soon after I've collected them up.

Reading:

- Section 1.8.1
- Section 1.8.2
- Section 2.4 (just read about approximating irrationals by rationals for your own amusement)
- Section 2.5
- Section 2.6.4

Problems:

- Section 1.8.1: 1, 3, 5
- Section 1.8.2: 5
- Section 2.4: 3, 4, 5, 7, 10, 13
- Section 2.5: $1,6,7,8,10,12$ (for 10 a, the yield sign can also be thought of as a triangle with an extra edge attached to one vertex; for 12 , here's a warning: I think that there is a typo in the text; T_{10} should be 145510740)
- In class we showed that the chromatic polynomial of C_{3} is $P_{C_{3}}(q)=q(q-1)(q-2)=$ $(q-1)^{3}+(-1)^{3}(q-1)$, and that that chromatic polynomial of C_{4} is $P_{C_{4}}(q)=q^{4}-4 q^{3}+$ $6 q^{2}-3 q=(q-1)^{4}+(-1)^{4}(q-1)$. Prove that this pattern continues: that for all $n \geq 3$,

$$
P_{C_{n}}(q)=(q-1)^{n}+(-1)^{n}(q-1) .
$$

