
Basic Combinatorics

Math 40210, Section 01 — Fall 2012

Homework 7 — Solutions

• 2.1 1a: 53 choice for initial character, 63 for all the rest, so (53)(63)(63)(63)(63) in
total.

• 2.1 1b: 53 with one character, 53 × 63 with two characters, so (53) + (53)(63) +
(53)(63)(63) + (53)(63)(63)(63) + (53)(63)(63)(63)(63) in total.

• 2.1 1c: 53 with one character, 53 with two characters (first character determines
second), 53× 63 with three characters (first character determines third), 53× 63 with
four characters (first two characters determines third and fourth), 53×63×63 with five
characters (first two characters determine fourth and fifth), so (53) + (53) + (53)(63) +
(53)(63) + (53)(63)(63) in total.

• 2.1 3a: 30!

• 2.1 3b: (14)(13)(12)

• 2.1 3c:
(
15
8

)
×
(
15
8

)
• 2.1 3d: In the western division there are in total 45 centers from which three must be

chosen, 60 guards from which four must be chosen, and 75 forwards from which five
must be chosen, leading to a total of

(
45
3

)(
60
4

)(
75
5

)
.

• 2.1 7: There are 1+10+
(
10
2

)
+
(
10
3

)
+
(
10
4

)
= 386 ways to choose up to four candidates for

city council (this includes choosing no-one). There are 1+8+(8×7)+(8×7×6) = 401
ways to rank up to three candidates for the school board (this includes ranking no-one).
There are 35 = 243 choices for the ballot measure (each one is either accepted, rejected
or ignored; this includes accepting/rejecting none). The total number of different ballots
is then

386× 401× 243.

• 2.1 11: An n which is a positive integer divisor ofN has prime factorization pα1
1 p

α2
2 . . . pαm

m ,
where each αi satisfies 0 ≤ αi ≤ ni. So there are ni + 1 choices for each αi, leading to
(n1 + 1)(n2 + 1) . . . (nm + 1) distinct positive integer divisors of N .

• 2.2 2: An algebraic proof is easy:(
n

k

)
=

n!

k!(n− k)!
=
n

k

(n− 1)!

(k − 1)!(n− k)!
=
n

k

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
=
n

k

(
n− 1

k − 1

)
.
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For a combinatorial proof, notice that multiplying through by k one gets

k

(
n

k

)
= n

(
n− 1

k − 1

)
.

This is exactly the identity from Quiz 4. It’s often called the committee-chair identity.
See the quiz solutions for a counting proof.

• 2.2 3: We have (
n

k

)(
k

m

)
=

n!

k!(n− k)!

k!

m!(k −m)!

=
n!

(n− k)!

1

m!(k −m)!

=
n!

m!

1

(k −m)!(n− k)!

=
n!

m!(n−m)!

(n−m)!

(k −m)!(n− k)!

=

(
n

m

)(
n−m
k −m

)
.

• 2.2 4: Either he first selects the k paintings to display from the n, and then selects the
m paintings from the k to display prominently, leading to a count of(

n

k

)(
k

m

)
,

or he first chooses the m paintings from the n to display prominently, then chooses
the remaining k −m from the remaining n−m to also display (but less prominently),
leading to a count of (

n

m

)(
n−m
k −m

)
.

Notice that this is a generalization of the identity from Quiz 4 (which is the case m = 1).

• 2.2 5: How many ways to choose n objects for m+ n+ 1?
(
m+n+1

n

)
. That’s the direct

way to count. Here’s a less direct way: any selection of n items from m+n+ 1, say the
m+ n+ 1 items are a1, a2, . . . , an+m+1, can be obtained by first selecting a consecutive
block starting from a1, then not selecting the first element after the block, and then
selecting the rest of the elements from beyond the block. If the initial block chosen
is a1 through an, then the remaining 0 elements have to be chosen from an+2 through
an+m+1, a list of length m; so

(
m
0

)
=
(
m+0
0

)
ways. If the initial block chosen is a1 through

an−1, then the remaining 1 element has to be chosen from an+1 through an+m+1, a list
of length m + 1; so

(
m+1
1

)
ways. If the initial block chosen is a1 through an−1, then

the remaining 2 elements have to be chosen from an through an+m+1, a list of length
m + 2; so

(
m+2
2

)
ways. We keep going like this until we get to the initial block being

just a1, leaving the remaining n− 1 elements to be chosen from a3 through an+m+1, a
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list of length m+(n−1); so
(
m+(n−1)
n−1

)
ways; and finally, we have the initial block being

empty, leaving all n elements to be chosen from a2 through an+m+1, a list of length
m+ n; so

(
m+n
n

)
ways. So in total there are

n∑
k=0

(
m+ k

k

)
ways to choose. The right- and left-hand sides are counting the same thing, so they are
equal.

• 2.2 7d: This is a tricky one! Without using
(
n
k

)
=
(

n
n−k

)
, I know of no way to approach

this (no algebraic or inductive proof, for example). Using
(
n
k

)
=
(

n
n−k

)
, we have∑

k

(
n

k

)2

=
∑
k

(
n

k

)(
n

n− k

)
.

The right hand-side is counting the number of ways of selecting a set of size n from a
set {a1, . . . , an, b1, . . . , bn} of size 2n, by first deciding how many of the n comes from
the ai’s (k of them, leading to a count of

(
n
k

)
), forcing the remainder to comes from the

bi’s (n − k of them, leading to a count of
(

n
n−k

)
). But by a direct count, we get that

this is just
(
2n
n

)
. (Notice that this is an example of the vandermonde convolution from

page 142, with m = ` = n in the displayed equation above (2.11)). In summary:∑
k

(
n

k

)2

=

(
2n

n

)
.

• 2.2 7e: If n = 0 and m is negative, then the sum is 0 (it is empty). If n = 0 and
m ≥ 0, then the sum is 1. That deals with n = 0; so from now on we assume n ≥ 1.

For n ≥ 1, if m < 0, then the sum is 0 (it is empty). For m = 0, there’s just one term,
and the sum is 1. For m ≥ n, the sum is the same as if we stopped at n, so it’s 0,
as we proved in class. So the remaining (and most interesting) cases are n ≥ 2 and
1 ≤ m ≤ n− 1.

A little experimentation with Pascal’s triangle suggests that in this range:∑
k≤m

(−1)k
(
n

k

)
= (−1)m

(
n− 1

m

)
.

For each fixed n ≥ 2, we prove this by induction on m, with the case m = 0 trivial.
For m > 0 we have∑

k≤m

(−1)k
(
n

k

)
=

(
n

m

)
+
∑

k≤m−1

(−1)k
(
n

k

)
= (−1)m

(
n

m

)
+ (−1)m−1

(
n− 1

m− 1

)
= (−1)m

((
n

m

)
−
(
n− 1

m− 1

))
= (−1)m

(
n− 1

m

)
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the second equality using the induction hypothesis and the last equality using Pascal’s
identity.

• 2.2 8 (just for falling powers): I don’t know of an easy way to do this algebraically or
by induction. If we allow ourselves to only prove the result for x, y positive integers,
then there are two easy approaches:

First, we can write (
n

k

)
xkyn−k =

n!

k!(n− k)!
xkyn−k

= n!
xk

k!

y(n−k)

(n− k)!

= n!

(
x

k

)(
y

n− k

)
.

So, by vandermonde’s convolution, we have∑
k

(
n

k

)
xkyn−k =

∑
k

n!

(
x

k

)(
y

n− k

)
= n!

∑
k

(
x

k

)(
y

n− k

)
= n!

(
x+ y

n

)
.

But also

(x+ y)n = n!

(
x+ y

n

)
.

So we have the identity.

Here’s another, more combinatorial way: the left hand side directly counts the number
of ways of taking n elements from a set of size x + y, say {a1, . . . , ax, b1, . . . , by}, and
arranging the n elements in order. Another way to do this is to select k elements (k
running from 0 to n) from {a1, . . . , ax} and arrange them in order (xk ways to do this),
take n − k elements from {b1, . . . , by} and arrange them in order (y(n−k) ways to do
this), and then merge the two ordered sets to get an ordered list of n elements from the
full set of a’s and b’s (

(
n
k

)
ways to do this - just choosing the k slots into which the a’s

go). So the right hand side also counts the number of ways of taking n elements from
a set of size x+ y and arranging them in order.

• 2.3 2 (it should be clarified that the steps must always be taken in a positive direction:
you can go from (x, y, z) to any of (x+ 1, y, z), (x, y + 1, z) or (x, y, z + 1), but not for
example to (x − 1, y, z).): In order to reach (a, b, c) from (0, 0, 0) taking steps parallel
to (and in the same direct as) (1, 0, 0), (0, 1, 0) and (0, 0, 1), we need to take exactly
a + b + c steps. a of these steps must be steps of the form (1, 0, 0), b of them must
be of the form (0, 1, 0), and c of them must be of the form (0, 0, 1). So we completely
determine a path by partitioning the set {1, . . . , a+ b+ c} into three classes, class 1 of
size a, class 2 of size b and class 3 of size c, with i falling into class 1 indicating that
the ith step is of the form (1, 0, 0), etc.. There are exactly

(
a+b+c
a,b,c

)
such partitions.

• 2.3 5: From a set of size n, first choose a subset of size k, and then choose an arbitrary
subset from the elements not chosen for the set of sized k. There are

(
n
k

)
ways to
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choose the first subsets, and subsequently 2n−k ways to choose the second subset, and
so 2n−k

(
n
k

)
ways in all to do the selection.

What you’ve done is divide the set of size n into 3 classes: class one is of size k (the
initial subset), class 2 is of some variable size j (the second subset) and class 3 is of
size n− k− j. For each possible size j of the second set, there are (by our definition of
the multinomial coefficient), a total of

(
n

k,j,n−j−k

)
ways to create the 3 classes. Since j

is variable, the total number of ways of creating the 3 classes is∑
j

(
n

k, j, n− j − k

)
=
∑
j

(
n

j, k, n− j − k

)
.

The right- and left-hand sides are counting the same thing, so they are equal.

Here’s an algebraic proof, using the binomial theorem:∑
j

(
n

k, j, n− j − k

)
=

∑
j

n!

k!j!(n− j − k)!

=
∑
j

n!(n− k)!

(n− k)!k!j!(n− j − k)!

=
∑
j

(
n

k

)(
n− k
j

)
=

(
n

k

)∑
j

(
n− k
j

)
=

(
n

k

)
2n−k.

• 2.3 7: The left hand side counts the number of ways of partitioning a set of size m+n,
say {a1, . . . , am} ∪ {b1, . . . , bn} into three classes, the first of size a, the second of size b
and the third of size c. The count is direct.

Another (indirect) way to count the same thing is to first decide how many of the ai’s
go into class 1 (say α of them), how many of the ai’s go into class 2 (say β of them),
and how many of the ai’s go into class 3 (say γ of them), then count the number of
partitions that actually achieve this split (the summand of the right hand side counts
exactly this: if α of the ai’s go into class 1, then a − α of the bi’s must, etc.), then
sum this quantity over all possible choices of α, β and γ (for which the only constraint
is α + β + γ = m, since all of the ai’s must go into some class). This is exactly the
right-hand side.

NB: I’m not vouching for the 100% accuracy of the numbers from here on - please let
me know if you spot errors!

• 2.3 9d: We have 6 A’s, 2 K’s, 2 L’s, 2 S’s, 1 N, and 1 U.

– r = 3: Total 181.
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∗ 1 choice for word type xxx, each with 1 anagram;

∗ 20 choices for word type xxy, each with 3 anagrams;

∗ 20 choices for word type xyz, each with 6 anagrams.

– r = 4: Total 897.

∗ 1 choice for word type xxxx, each with 1 anagram;

∗ 5 choices for word type xxxy, each with 4 anagrams;

∗ 6 choices for word type xxyy, each with 6 anagrams;

∗ 40 choices for word type xxyz, each with 12 anagrams;

∗ 15 choices for word type xyzw, each with 24 anagrams.

– r = 14: (
14

6, 2, 2, 2, 1, 1

)
=

14!

6!2!2!2!

• 2.3 9e: We have 5 A’s, 4 L’s, and 3 W’s.

– r = 4: Total 80

∗ 2 choices for word type xxxx, each with 1 anagram;

∗ 6 choices for word type xxxy, each with 4 anagrams;

∗ 3 choices for word type xxyy, each with 6 anagrams;

∗ 3 choices for word type xxyz, each with 12 anagrams;

∗ 0 choices for word type xyzw, each with 24 anagrams.

– r = 5: Total 231

∗ 1 choice for word type xxxxx, each with 1 anagram;

∗ 4 choices for word type xxxxy, each with 5 anagrams;

∗ 6 choices for word type xxxyy, each with 10 anagrams;

∗ 3 choices for word type xxxyz, each with 20 anagrams;

∗ 3 choices for word type xxyyz, each with 30 anagrams;

∗ 0 choices for all other word types.

– r = 12: (
12

5, 4, 3

)
=

12!

5!4!3!
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