Math 30530, Probability

Quiz 5, Friday April 12
Solutions

A bag has three balls, numbered " 1 ", " 2 " and " 3 ". I draw twice from the bag, without replacement, and note the two numbers that I see. Let X be the smaller of the two numbers, and Y the larger.

1. Find the joint mass function of X and Y.

Solution: There are 6 equally likely possibilities:

- first 1, then 2; or first 2, then 1: both lead to $X=1, Y=2$;
- first 1, then 3; or first 3, then 1: both lead to $X=1, Y=3$;
- first 2 , then 3 ; or first 3 , then 2: both lead to $X=2, Y=3$;
so $p_{X, Y}(1,2)=1 / 3, p_{X, Y}(1,3)=1 / 3$, and $p_{X, Y}(2,3)=1 / 3$, with all other probabilities being 0 .

2. Write down the marginal densities of X and Y.

Solution: For $X: p_{X}(1)=2 / 3, p_{X}(2)=1 / 3, p_{X}(3)=0$.
For $Y: p_{Y}(1)=0, p_{Y}(2)=1 / 3, p_{Y}(3)=2 / 3$.
3. Are X and Y independent? Briefly say why or why not.

No. It is not the case that $p_{X}(x) p_{Y}(y)=p_{X, Y}(x, y)$. For example, $p_{X}(2) p_{Y}(2)=1 / 9 \neq 0=p_{X, Y}(2,2)$.
4. What is the expected value of $X Y$?

Solution: $E(X Y)=(1)(2)(1 / 3)+(1)(3)(1 / 3)+(2)(3)(1 / 3)=11 / 3$.
5. Compute $\operatorname{Cov}(X, Y)$, and give a very brief interpretation of your answer.

Solution: $E(X)=(1)(2 / 3)+(2)(1 / 3)+(3)(0)=4 / 3$ and $E(Y)=(1)(0)+(2)(1 / 3)+(3)(2 / 3)=8 / 3$. So

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{11}{3}-\left(\frac{4}{3}\right)\left(\frac{8}{3}\right)=\frac{1}{9}
$$

So X, Y are positively correlated - they tend to be large together or small together.

