Math 30530, Probability

Quiz 2, Wednesday February 20

Solutions

1. 2% of all Rayovac AA batteries, and 5% of Duracell AA batteries are defective. One quarter of the AA batteries in my battery drawer are Rayovac (the rest are Duracell). I take an AA battery from my drawer at random, and find it to be defective. How likely is it to have been a Rayovac?

Solution: Let R be the event that the battery chosen is Rayovac, D Duracell (so $R \cup D=S$, the whole sample space, and they are disjoint), and let B be the event that the battery is defective. By Bayes,

$$
P(R \mid B)=\frac{P(B \mid R) P(R)}{P(B \mid R) P(R)+P(B \mid D) P(D)}=\frac{(.02)(0.25)}{(.02)(0.25)+(.05)(0.75)}=0.1176 \ldots
$$

2. (a) Let A, B, C be three events in a probability space. What is the definition of "the collection of events A, B, C is independent"?
Solution: Each of $P(A \cap B)=P(A) P(B), P(A \cap C)=P(A) P(C), P(B \cap C)=P(B) P(C)$ and $P(A \cap B \cap C)=P(A) P(B) P(C)$ hold.
(b) I roll three balanced (fair) die - a four-sided one, with faces marked " 1 " through " 4 ", a five-sided one, with faces marked " 1 " through " 5 ", and a six-sided one, with faces marked " 1 " through " 6 ". How likely am I to see the same number on each die?
Solution: The probability that all three show " 1 " is, by independence of the three die, $(1 / 4)(1 / 5)(1 / 6)=$ $1 / 120$. This is also the probability that all three show each of " 2 ", " 3 " or " 4 ". Since these are the only possibilities for the common number, the probability is $4(1 / 120)$ or $1 / 30$.
