Example of Poisson Distribution-Wars by Year

• Number of wars beginning by year for years 1482-1939. Table of Frequency counts and proportions (458 years):

wars	Frequency	Proportion
0	242	0.5284
1	148	0.3231
2	49	0.1070
3	15	0.0328
4	4	0.0087
More	0	0

- Total Wars: 0(242) + 1(148) + 2(49) + 3(15) + 4(4) = 307
- Average Wars per year: 307 wars / 458 years = 0.67 wars/year

Using Poisson Distribution as Approximation

• Since mean of empirical (observed) distribution is 0.67, use that as mean for Poisson distribution (that is, set $\mu = 0.67$)

$$-p(0) = (e^{-\mu}\mu^0)/0! = e^{-0.67} = 0.5117$$

- $-p(1) = (e^{-\mu} \mu^1)/1! = e^{-0.67}(0.67) = 0.3428$
- $(-p(2) = (e^{-\mu} \mu^2)/2! = e^{-0.67}(0.67)^2/2 = 0.1149$
- $-p(3) = (e^{-\mu} \mu^3)/3! = e^{-0.67}(0.67)^3/6 = 0.0257$
- $-p(4) = (e^{-\mu} \mu^4)/4! = e^{-0.67}(0.67)^4/24 = 0.0043$
- $-P(x \ge 5) = 1 P(x \le 4) =$

1-.5117-.3428-.1149-.0257-.0043=0.0006

Comparison of Observed and Model Probabilities

wars	Frequency	Proportion	Model
0	242	0.5284	0.5117
1	148	0.3231	0.3428
2	49	0.1070	0.1149
3	15	0.0328	0.0257
4	4	0.0087	0.0043
More	0	0	0.0006

The model provides a good fit to the observed data.

Acknowledgement:

Data and slides from Larry Winner, Dept. of Stats, U. Florida