Example of Poisson Distribution-Wars by Year

- Number of wars beginning by year for years 1482-1939. Table of Frequency counts and proportions (458 years):

wars	Frequency	Proportion
0	242	0.5284
1	148	0.3231
2	49	0.1070
3	15	0.0328
4	4	0.0087
More	0	0

- Total Wars: $0(242)+1(148)+2(49)+3(15)+4(4)=307$
- Average Wars per year: 307 wars / 458 years $=0.67$ wars/year

Using Poisson Distribution as Approximation

- Since mean of empirical (observed) distribution is 0.67 , use that as mean for Poisson distribution (that is, set $\mu=0.67$)
$-p(0)=\left(e^{-\mu} \mu^{0}\right) / 0!=e^{-0.67}=0.5117$
$-p(1)=\left(e^{-\mu} \mu^{1}\right) / 1!=e^{-0.67}(0.67)=0.3428$
$-p(2)=\left(e^{-\mu} \mu^{2}\right) / 2!=e^{-0.67}(0.67)^{2} / 2=0.1149$
$-p(3)=\left(e^{-\mu} \mu^{3}\right) / 3!=e^{-0.67}(0.67)^{3} / 6=0.0257$
$-p(4)=\left(e^{-\mu} \mu^{4}\right) / 4!=e^{-0.67}(0.67)^{4} / 24=0.0043$
$-P(x \geq 5)=1-P(x \leq 4)=$
$1-.5117-.3428-.1149-.0257-.0043=0.0006$

Comparison of Observed and Model Probabilities

wars	Frequency	Proportion	Model
0	242	0.5284	0.5117
1	148	0.3231	0.3428
2	49	0.1070	0.1149
3	15	0.0328	0.0257
4	4	0.0087	0.0043
More	0	0	0.0006

The model provides a good fit to the observed data.
Acknowledgement:
Data and slides from Larry Winner, Dept. of Stats, U. Florida

