Paradox of the two children

Math 30530, Fall 2013

September 3, 2013

Scenario 1: "The elder is a girl"

I have two children (not twins). The elder is a girl. What's the probability that they are both girls?

Scenario 1: "The elder is a girl"

I have two children (not twins). The elder is a girl. What's the probability that they are both girls?

Experiment: Pick a random man from among those with two children.
Observe: (gender of younger, gender of older)

Scenario 1: "The elder is a girl"

I have two children (not twins). The elder is a girl. What's the probability that they are both girls?

Experiment: Pick a random man from among those with two children.
Observe: (gender of younger, gender of older)
$\Omega=\{(G, G),(G, B),(B, G),(B, B)\}$, all equally likely

Scenario 1: "The elder is a girl"

 I have two children (not twins). The elder is a girl. What's the probability that they are both girls?Experiment: Pick a random man from among those with two children.
Observe: (gender of younger, gender of older)
$\Omega=\{(G, G),(G, B),(B, G),(B, B)\}$, all equally likely
$A=\{$ two girls $\}=\{(G, G)\}$,
$B=\{$ elder a girl $\}=\{(G, G),(B, G)\}$

Scenario 1: "The elder is a girl"

 I have two children (not twins). The elder is a girl. What's the probability that they are both girls?Experiment: Pick a random man from among those with two children.
Observe: (gender of younger, gender of older)
$\Omega=\{(G, G),(G, B),(B, G),(B, B)\}$, all equally likely
$A=\{$ two girls $\}=\{(G, G)\}$,
$B=\{$ elder a girl $\}=\{(G, G),(B, G)\}$

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{1 / 4}{1 / 2}=\frac{1}{2}
$$

OR

$$
\operatorname{Pr}(A \mid B)=\frac{|A \cap B|}{|B|}=\frac{1}{2}
$$

Scenario 2: "One of them is a girl"

I have two children (not twins). One of them is a girl. What's the probability that they are both girls?

Scenario 2: "One of them is a girl"

I have two children (not twins). One of them is a girl. What's the probability that they are both girls?

Experiment: Pick a random man from among those with two children.
Observe: (gender of younger, gender of older)

Scenario 2: "One of them is a girl"

I have two children (not twins). One of them is a girl. What's the probability that they are both girls?

Experiment: Pick a random man from among those with two children.
Observe: (gender of younger, gender of older)
$\Omega=\{(G, G),(G, B),(B, G),(B, B)\}$, all equally likely

Scenario 2: "One of them is a girl"

I have two children (not twins). One of them is a girl.
What's the probability that they are both girls?
Experiment: Pick a random man from among those with two children.
Observe: (gender of younger, gender of older)
$\Omega=\{(G, G),(G, B),(B, G),(B, B)\}$, all equally likely
$A=\{\mathrm{two}$ girls $\}=\{(G, G)\}$,
$C=\{$ one is a girl $\}=\{(G, G),(B, G),(G, B)\}$

Scenario 2: "One of them is a girl"

I have two children (not twins). One of them is a girl.
What's the probability that they are both girls?
Experiment: Pick a random man from among those with two children.
Observe: (gender of younger, gender of older)
$\Omega=\{(G, G),(G, B),(B, G),(B, B)\}$, all equally likely
$A=\{$ two girls $\}=\{(G, G)\}$,
$C=\{$ one is a girl $\}=\{(G, G),(B, G),(G, B)\}$

$$
\operatorname{Pr}(A \mid C)=\frac{\operatorname{Pr}(A \cap C)}{\operatorname{Pr}(C)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}
$$

OR

$$
\operatorname{Pr}(A \mid C)=\frac{|A \cap C|}{|C|}=\frac{1}{3}
$$

