Miscellaneous discrete random variable examples

Math 30530, Fall 2013

September 27, 2013

Negative Binomial

10% of the population has bloodtype AB-. A researcher samples from a pool of volunteers until he has found 5 people with bloodtype AB-. How likely is it to take 45 attempts?

Negative Binomial

10% of the population has bloodtype $A B$-. A researcher samples from a pool of volunteers until he has found 5 people with bloodtype AB-. How likely is it to take 45 attempts?

45th attempt has to be success; of the first 44 attempts, exactly 4 must be success, so

$$
p=\binom{44}{4}(.1)^{5}(.9)^{40} \approx .02
$$

Negative Binomial

10% of the population has bloodtype $A B$-. A researcher samples from a pool of volunteers until he has found 5 people with bloodtype AB-. How likely is it to take 45 attempts?

45th attempt has to be success; of the first 44 attempts, exactly 4 must be success, so

$$
p=\binom{44}{4}(.1)^{5}(.9)^{40} \approx .02
$$

Negative binomial random variable: Parameters m and p

- Counts number of independent trials (each with success probability p) until exactly m successes have been recorded
- Possible values: $k=m, m+1, m+2, \ldots$
- Mass function: $\operatorname{Pr}(X=k)=\binom{k-1}{m-1} p^{m}(1-p)^{k-m}$

Negative Binomial

10% of the population has bloodtype $A B$-. A researcher samples from a pool of volunteers until he has found 5 people with bloodtype AB-. How likely is it to take 45 attempts?

45th attempt has to be success; of the first 44 attempts, exactly 4 must be success, so

$$
p=\binom{44}{4}(.1)^{5}(.9)^{40} \approx .02
$$

Negative binomial random variable: Parameters m and p

- Counts number of independent trials (each with success probability p) until exactly m successes have been recorded
- Possible values: $k=m, m+1, m+2, \ldots$
- Mass function: $\operatorname{Pr}(X=k)=\binom{k-1}{m-1} p^{m}(1-p)^{k-m}$

When $m=1$, Negative binomial becomes geometric

Hypergeometric

The math department has 20 faculty members, among whom 7 are women. We choose an undergraduate committee by selecting 8 faculty members at random (all choices of 8 people equally likely). What is the probability that exactly 4 of the committee members are women?

Hypergeometric

The math department has 20 faculty members, among whom 7 are women. We choose an undergraduate committee by selecting 8 faculty members at random (all choices of 8 people equally likely). What is the probability that exactly 4 of the committee members are women?

Sampling without replacement, so can't use binomial. Instead count number of successful outcomes, divided by total number of outcomes.

$$
p=\frac{\binom{7}{4}\binom{13}{4}}{\binom{20}{8}} \approx .1986
$$

$($ compare $\operatorname{Pr}(\operatorname{Binomial}(8, .35)=4) \approx .1875)$

Hypergeometric, continued

Hypergeometric random variable: Parameters N, M and r

- Sample, without replacement, r things from a set that has N "good" things and M "bad" things, and count the number of "good" things in the sample
- Possible values: $k=0,1, \ldots, r$
- Mass function: $\operatorname{Pr}(X=k)=\frac{\binom{N}{k}\binom{M}{r-k}}{\binom{N+M}{r}}$

Hypergeometric, continued

Hypergeometric random variable: Parameters N, M and r

- Sample, without replacement, r things from a set that has N "good" things and M "bad" things, and count the number of "good" things in the sample
- Possible values: $k=0,1, \ldots, r$
- Mass function: $\operatorname{Pr}(X=k)=\frac{\binom{N}{k}\binom{M}{N}}{\binom{N+M}{r}}$

When N, M large, negative binomial very close to binomial with $p=r / M$

Who wins the series?

Red Sox and Rays play a best-of-(2n-1) series (first to n wins series). Red Sox win each game with probability p, all games independent.

Who wins the series?

Red Sox and Rays play a best-of-($2 n-1$) series (first to n wins series). Red Sox win each game with probability p, all games independent.
Q1: Let X be length of series. What's the mass function of X ?

Who wins the series?

Red Sox and Rays play a best-of-(2n-1) series (first to n wins series). Red Sox win each game with probability p, all games independent.
Q1: Let X be length of series. What's the mass function of X ?
A: Possible values $n, \ldots, 2 n-1$.

$$
\begin{aligned}
\operatorname{Pr}(X=k) & =\binom{k-1}{n-1} p^{n}(1-p)^{k-n}+\binom{k-1}{n-1}(1-p)^{n}(1-p)^{k-n} \\
& =(\text { Red Sox win })+(\text { Rays win })
\end{aligned}
$$

Who wins the series?

Red Sox and Rays play a best-of-(2n-1) series (first to n wins series).
Red Sox win each game with probability p, all games independent.
Q1: Let X be length of series. What's the mass function of X ?
A: Possible values $n, \ldots, 2 n-1$.

$$
\begin{aligned}
\operatorname{Pr}(X=k) & =\binom{k-1}{n-1} p^{n}(1-p)^{k-n}+\binom{k-1}{n-1}(1-p)^{n}(1-p)^{k-n} \\
& =(\text { Red Sox win })+(\text { Rays win })
\end{aligned}
$$

Q2: What's the probability that the Red Sox win?

Who wins the series?

Red Sox and Rays play a best-of-(2n-1) series (first to n wins series).
Red Sox win each game with probability p, all games independent.
Q1: Let X be length of series. What's the mass function of X ?
A: Possible values $n, \ldots, 2 n-1$.

$$
\begin{aligned}
\operatorname{Pr}(X=k) & =\binom{k-1}{n-1} p^{n}(1-p)^{k-n}+\binom{k-1}{n-1}(1-p)^{n}(1-p)^{k-n} \\
& =(\text { Red Sox win })+(\text { Rays win })
\end{aligned}
$$

Q2: What's the probability that the Red Sox win?
A: $\sum_{k=n}^{2 n-1}\binom{k-1}{n-1} p^{n}(1-p)^{k-n}$

Who wins the series, continued

Q3: Suppose Red Sox are stronger than the Rays ($p \geq 1 / 2$). Do the Red Sox prefer a short or a long series?

Who wins the series, continued

Q3: Suppose Red Sox are stronger than the Rays ($p \geq 1 / 2$). Do the Red Sox prefer a short or a long series?
A: First look at best-of-1 versus best-of-3:

$$
p \text { versus } p^{2}+2 p^{2}(1-p)=3 p^{2}-2 p^{3}
$$

Second is larger when $p \geq 1 / 2$

Who wins the series, continued

Q3: Suppose Red Sox are stronger than the Rays ($p \geq 1 / 2$). Do the Red Sox prefer a short or a long series?
A: First look at best-of-1 versus best-of-3:

$$
p \text { versus } p^{2}+2 p^{2}(1-p)=3 p^{2}-2 p^{3}
$$

Second is larger when $p \geq 1 / 2$
Next look at best-of-3 versus best-of-5:

$$
3 p^{2}-2 p^{3} \text { versus } p^{3}+3 p^{3}(1-p)+6 p^{3}(1-p)^{2}
$$

Second is larger when $p \geq 1 / 2$

Who wins the series, continued

Q3: Suppose Red Sox are stronger than the Rays ($p \geq 1 / 2$). Do the Red Sox prefer a short or a long series?
A: First look at best-of-1 versus best-of-3:

$$
p \text { versus } p^{2}+2 p^{2}(1-p)=3 p^{2}-2 p^{3}
$$

Second is larger when $p \geq 1 / 2$
Next look at best-of-3 versus best-of-5:

$$
3 p^{2}-2 p^{3} \text { versus } p^{3}+3 p^{3}(1-p)+6 p^{3}(1-p)^{2}
$$

Second is larger when $p \geq 1 / 2$
General pattern: the longer series is better for the stronger team; see homework solutions for a complete verification

Banach's matchbox problem

Banach has a box of 100 matches in each pocket (left and right). Each time he lights a cigarette, he picks a random pocket to get a match from. At some moment, he reaches into a pocket and finds an empty matchbox. How many matches are in the other pocket at this moment?

Banach's matchbox problem

Banach has a box of 100 matches in each pocket (left and right). Each time he lights a cigarette, he picks a random pocket to get a match from. At some moment, he reaches into a pocket and finds an empty matchbox. How many matches are in the other pocket at this moment?
Let X be the number. Possible values are $0,1,2, \ldots, 100$

Banach's matchbox problem

Banach has a box of 100 matches in each pocket (left and right). Each time he lights a cigarette, he picks a random pocket to get a match from. At some moment, he reaches into a pocket and finds an empty matchbox. How many matches are in the other pocket at this moment?
Let X be the number. Possible values are $0,1,2, \ldots, 100$
Sample space: strings of R's and L's, EITHER last is R, there are 101 R 's, no more than 100 L's, OR last is L, there are 101 L's, no more than 100 R's. Probability of sample point of length n is $(1 / 2)^{n}$

Banach's matchbox problem

Banach has a box of 100 matches in each pocket (left and right). Each time he lights a cigarette, he picks a random pocket to get a match from. At some moment, he reaches into a pocket and finds an empty matchbox. How many matches are in the other pocket at this moment?
Let X be the number. Possible values are $0,1,2, \ldots, 100$
Sample space: strings of R's and L's, EITHER last is R, there are 101 R 's, no more than 100 L's, OR last is L, there are 101 L's, no more than 100 R's. Probability of sample point of length n is $(1 / 2)^{n}$
Sample points leading to $X=k$: EITHER last is R, there are 101 R's, exactly $100-k$ L's, OR last is L, there are 101 L's, exactly $100-k$ R's. All have probability $(1 / 2)^{201-k}$.

Banach's matchbox problem

Banach has a box of 100 matches in each pocket (left and right). Each time he lights a cigarette, he picks a random pocket to get a match from. At some moment, he reaches into a pocket and finds an empty matchbox. How many matches are in the other pocket at this moment?
Let X be the number. Possible values are $0,1,2, \ldots, 100$
Sample space: strings of R's and L's, EITHER last is R, there are 101 R 's, no more than 100 L's, OR last is L, there are 101 L's, no more than 100 R's. Probability of sample point of length n is $(1 / 2)^{n}$
Sample points leading to $X=k$: EITHER last is R, there are 101 R's, exactly $100-k$ L's, OR last is L, there are 101 L's, exactly $100-k$ R's. All have probability $(1 / 2)^{201-k}$.

$$
\operatorname{Pr}(X=k)=2\binom{200-k}{100}\left(\frac{1}{2}\right)^{201-k}=\frac{\binom{200-k}{k}}{2^{200-k}}
$$

Banach's matchbox problem

Banach has a box of 100 matches in each pocket (left and right). Each time he lights a cigarette, he picks a random pocket to get a match from. At some moment, he reaches into a pocket and finds an empty matchbox. How many matches are in the other pocket at this moment?
Let X be the number. Possible values are $0,1,2, \ldots, 100$
Sample space: strings of R's and L's, EITHER last is R, there are 101 R 's, no more than 100 L's, OR last is L, there are 101 L's, no more than 100 R's. Probability of sample point of length n is $(1 / 2)^{n}$
Sample points leading to $X=k$: EITHER last is R, there are 101 R's, exactly $100-k$ L's, OR last is L, there are 101 L's, exactly $100-k$ R's. All have probability $(1 / 2)^{201-k}$.

$$
\operatorname{Pr}(X=k)=2\binom{200-k}{100}\left(\frac{1}{2}\right)^{201-k}=\frac{\binom{200-k}{k}}{2^{200-k}}
$$

See http:
//www-stat.stanford.edu/~susan/surprise/Banach.html

