Independence of events (with example)

Math 30530, Fall 2013

September 11, 2013

Independence of two events

A is independent of B if

$$
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)
$$

Independence of two events

A is independent of B if

$$
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)
$$

This is same as

$$
\begin{equation*}
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B) \tag{1}
\end{equation*}
$$

and so also the same as

$$
\operatorname{Pr}(B \mid A)=\operatorname{Pr}(B)
$$

Independence of two events

A is independent of B if

$$
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)
$$

This is same as

$$
\begin{equation*}
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B) \tag{1}
\end{equation*}
$$

and so also the same as

$$
\operatorname{Pr}(B \mid A)=\operatorname{Pr}(B)
$$

We use (1) as definition of independent, and say that A, B are independent.

Independence of two events

A is independent of B if

$$
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)
$$

This is same as

$$
\begin{equation*}
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B) \tag{1}
\end{equation*}
$$

and so also the same as

$$
\operatorname{Pr}(B \mid A)=\operatorname{Pr}(B)
$$

We use (1) as definition of independent, and say that A, B are independent.
Independence means: nothing you learn about one, tells you anything new about the other. E.g., if A, B are independent then:

$$
\begin{aligned}
\operatorname{Pr}(B \mid A) & =\operatorname{Pr}(B) \\
\operatorname{Pr}\left(A \mid B^{c}\right) & =\operatorname{Pr}(A) \\
\operatorname{Pr}\left(A^{c} \mid B^{C}\right) & =\operatorname{Pr}\left(A^{c}\right)
\end{aligned}
$$

Independence of many events

$A_{1}, A_{2}, \ldots, A_{n}$ are independent if (informally) nothing you learn about some of the A 's, tells you anything new about another. E.g., if A_{1}, \ldots, A_{n}, are independent then:

$$
\begin{aligned}
\operatorname{Pr}\left(A_{1} \mid A_{2} \cap A_{3} \cap A_{7}\right) & =\operatorname{Pr}\left(A_{1}\right) \\
\operatorname{Pr}\left(A_{5}^{c} \mid A_{3} \cap A_{7}^{c} \cap A_{11}\right) & =\operatorname{Pr}\left(A_{5}^{c}\right) \\
\operatorname{Pr}\left(A_{6} \mid A_{8}\right) & =\operatorname{Pr}\left(A_{6}\right)
\end{aligned}
$$

Independence of many events

$A_{1}, A_{2}, \ldots, A_{n}$ are independent if (informally) nothing you learn about some of the A 's, tells you anything new about another. E.g., if A_{1}, \ldots, A_{n}, are independent then:

$$
\begin{aligned}
\operatorname{Pr}\left(A_{1} \mid A_{2} \cap A_{3} \cap A_{7}\right) & =\operatorname{Pr}\left(A_{1}\right) \\
\operatorname{Pr}\left(A_{5}^{c} \mid A_{3} \cap A_{7}^{c} \cap A_{11}\right) & =\operatorname{Pr}\left(A_{5}^{c}\right) \\
\operatorname{Pr}\left(A_{6} \mid A_{8}\right) & =\operatorname{Pr}\left(A_{6}\right)
\end{aligned}
$$

Definition: $A_{1}, A_{2}, \ldots, A_{n}$ are independent if for every subset of the A 's,
Probability of intersection $=$ product of probabilities.

Independence of many events

$A_{1}, A_{2}, \ldots, A_{n}$ are independent if (informally) nothing you learn about some of the A's, tells you anything new about another. E.g., if A_{1}, \ldots, A_{n}, are independent then:

$$
\begin{aligned}
\operatorname{Pr}\left(A_{1} \mid A_{2} \cap A_{3} \cap A_{7}\right) & =\operatorname{Pr}\left(A_{1}\right) \\
\operatorname{Pr}\left(A_{5}^{c} \mid A_{3} \cap A_{7}^{c} \cap A_{11}\right) & =\operatorname{Pr}\left(A_{5}^{c}\right) \\
\operatorname{Pr}\left(A_{6} \mid A_{8}\right) & =\operatorname{Pr}\left(A_{6}\right)
\end{aligned}
$$

Definition: $A_{1}, A_{2}, \ldots, A_{n}$ are independent if for every subset of the A 's,
Probability of intersection = product of probabilities.
I.e., for A, B, C, this means:
$\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B), \operatorname{Pr}(A \cap C)=\operatorname{Pr}(A) \operatorname{Pr}(C), \operatorname{Pr}(B \cap C)=\operatorname{Pr}(B) \operatorname{Pr}(C)$ AND

$$
\operatorname{Pr}(A \cap B \cap C)=\operatorname{Pr}(A) \operatorname{Pr}(B) \operatorname{Pr}(C) .
$$

Example

A bulb will work for one year with probability p. To light my basement, I install n bulbs, all operating independently. What is the probability that after one year, at least one of the bulbs will still be working?

Example

A bulb will work for one year with probability p. To light my basement, I install n bulbs, all operating independently. What is the probability that after one year, at least one of the bulbs will still be working?
Answer: Let A_{i} be the event that the i th bulb works after a year. The A_{i} 's are assumed independent, so

$$
\begin{aligned}
\operatorname{Pr}(\geq 1) & =1-\operatorname{Pr}(0) \\
& =1-\operatorname{Pr}\left(A_{1}^{c} \cap \ldots \cap A_{n}^{c}\right) \\
& =1-\operatorname{Pr}\left(A_{1}^{c}\right) \ldots \operatorname{Pr}\left(A_{n}^{c}\right) \\
& =1-(1-p)^{n} .
\end{aligned}
$$

Example

A bulb will work for one year with probability p. To light my basement, I install n bulbs, all operating independently. What is the probability that after one year, at least one of the bulbs will still be working?
Answer: Let A_{i} be the event that the i th bulb works after a year. The A_{i} 's are assumed independent, so

$$
\begin{aligned}
\operatorname{Pr}(\geq 1) & =1-\operatorname{Pr}(0) \\
& =1-\operatorname{Pr}\left(A_{1}^{c} \cap \ldots \cap A_{n}^{c}\right) \\
& =1-\operatorname{Pr}\left(A_{1}^{c}\right) \ldots \operatorname{Pr}\left(A_{n}^{c}\right) \\
& =1-(1-p)^{n} .
\end{aligned}
$$

What is the probability that after one year, exactly k of the bulbs will still be working?

Example

A bulb will work for one year with probability p. To light my basement, I install n bulbs, all operating independently. What is the probability that after one year, at least one of the bulbs will still be working?
Answer: Let A_{i} be the event that the i th bulb works after a year. The A_{i} 's are assumed independent, so

$$
\begin{aligned}
\operatorname{Pr}(\geq 1) & =1-\operatorname{Pr}(0) \\
& =1-\operatorname{Pr}\left(A_{1}^{c} \cap \ldots \cap A_{n}^{c}\right) \\
& =1-\operatorname{Pr}\left(A_{1}^{c}\right) \ldots \operatorname{Pr}\left(A_{n}^{c}\right) \\
& =1-(1-p)^{n} .
\end{aligned}
$$

What is the probability that after one year, exactly k of the bulbs will still be working?

$$
\operatorname{Pr}(k)=(\#(n, k)) p^{k}(1-p)^{n-k}
$$

where $\#(n, k)$ is the number of ways of selecting k bulbs out of the n to be working.

