Discrete Random Variables

Math 30530, Fall 2013

September 18, 2013

• To each outcome ω of experiment, assign numerical value $X(\omega)$

- To each outcome ω of experiment, assign numerical value $X(\omega)$
- Function $X : \Omega \to \mathbb{R}$ is a **random variable**

- To each outcome ω of experiment, assign numerical value $X(\omega)$
- Function $X : \Omega \to \mathbb{R}$ is a **random variable**
- If set of values that X takes on is finite or countable, X is **discrete**

- To each outcome ω of experiment, assign numerical value $X(\omega)$
- Function $X : \Omega \to \mathbb{R}$ is a **random variable**
- If set of values that X takes on is finite or countable, X is discrete
- For each $x \in \mathbb{R}$, $\{\omega | X(\omega) = x\} = \{X = x\} = "X = x"$ is an event

- To each outcome ω of experiment, assign numerical value $X(\omega)$
- Function $X : \Omega \to \mathbb{R}$ is a **random variable**
- If set of values that X takes on is finite or countable, X is discrete
- For each $x \in \mathbb{R}$, $\{\omega | X(\omega) = x\} = \{X = x\} = "X = x"$ is an event
- (Probability) mass function of X: for each $x \in \mathbb{R}$

$$p_X(x) = \Pr(X = x)$$

- To each outcome ω of experiment, assign numerical value $X(\omega)$
- Function $X : \Omega \to \mathbb{R}$ is a **random variable**
- If set of values that X takes on is finite or countable, X is discrete
- For each $x \in \mathbb{R}$, $\{\omega | X(\omega) = x\} = \{X = x\} = "X = x"$ is an event
- (Probability) mass function of X: for each $x \in \mathbb{R}$

$$p_X(x) = \Pr(X = x)$$

• Basic facts about mass function:

•
$$p_X(x) \ge 0$$
 always

- To each outcome ω of experiment, assign numerical value $X(\omega)$
- Function $X : \Omega \to \mathbb{R}$ is a **random variable**
- If set of values that X takes on is finite or countable, X is discrete
- For each $x \in \mathbb{R}$, $\{\omega | X(\omega) = x\} = \{X = x\} = "X = x"$ is an event
- (Probability) mass function of X: for each $x \in \mathbb{R}$

$$p_X(x) = \Pr(X = x)$$

- Basic facts about mass function:
 - $p_X(x) \ge 0$ always
 - $\sum_{x\in\mathbb{R}} p_X(x) = 1$

- To each outcome ω of experiment, assign numerical value $X(\omega)$
- Function $X : \Omega \to \mathbb{R}$ is a **random variable**
- If set of values that X takes on is finite or countable, X is discrete
- For each $x \in \mathbb{R}$, $\{\omega | X(\omega) = x\} = \{X = x\} = "X = x"$ is an event
- (Probability) mass function of X: for each $x \in \mathbb{R}$

$$p_X(x) = \Pr(X = x)$$

- Basic facts about mass function:
 - $p_X(x) \ge 0$ always
 - $\sum_{x\in\mathbb{R}} p_X(x) = 1$
- Think of random variable as a tool to focus on what's important about the outcome of an experiment