Math 30530, Fall 2013

August 28, 2013

Math 30530 (Fall 2012)

Discrete models

August 28, 2013 1 / 2

Experiment: finitely many outcomes, or countably (listably) many

- Experiment: finitely many outcomes, or countably (listably) many
- **2** Sample space: $\Omega = \{s_1, s_2, s_3, ..., s_n\}$ or $\Omega = \{s_1, s_2, s_3, ...\}$

- Experiment: finitely many outcomes, or countably (listably) many
- **2** Sample space: $\Omega = \{s_1, s_2, s_3, ..., s_n\}$ or $\Omega = \{s_1, s_2, s_3, ...\}$
- **Probabilities**: $Pr(s_1)$, $Pr(s_2)$, $Pr(s_3)$,..., assigned based on analysis of experiment, with each $Pr(s_i) \ge 0$ and

 $\Pr(s_1) + \Pr(s_2) + \Pr(s_3) + \ldots = 1$

- Experiment: finitely many outcomes, or countably (listably) many
- **2** Sample space: $\Omega = \{s_1, s_2, s_3, ..., s_n\}$ or $\Omega = \{s_1, s_2, s_3, ...\}$
- **Probabilities**: $Pr(s_1)$, $Pr(s_2)$, $Pr(s_3)$,..., assigned based on analysis of experiment, with each $Pr(s_i) \ge 0$ and

$$\Pr(s_1) + \Pr(s_2) + \Pr(s_3) + \ldots = 1$$

9 Probability of event: If $E = \{s_1, s_2, \ldots, s_k\}$,

 $\Pr(E) = \Pr(s_1) + \Pr(s_2) + \Pr(s_3) + \ldots + \Pr(s_k)$

- Experiment: finitely many outcomes, or countably (listably) many
- **2** Sample space: $\Omega = \{s_1, s_2, s_3, ..., s_n\}$ or $\Omega = \{s_1, s_2, s_3, ...\}$
- **Probabilities**: $Pr(s_1)$, $Pr(s_2)$, $Pr(s_3)$, ..., assigned based on analysis of experiment, with each $Pr(s_i) \ge 0$ and

$$\Pr(s_1) + \Pr(s_2) + \Pr(s_3) + \ldots = 1$$

- Solution Probability of event: If $E = \{s_1, s_2, \dots, s_k\}$, $Pr(E) = Pr(s_1) + Pr(s_2) + Pr(s_3) + \dots + Pr(s_k)$
- **5** Discrete <u>uniform</u> models: If $\Omega = \{s_1, s_2, \dots, s_n\}$ (finite) and $Pr(s_1) = Pr(s_2) = \dots = Pr(s_n) \ (= 1/n)$

then

$$\Pr(E) = \frac{\#(\text{outcomes in } E)}{\#(\text{outcomes in } \Omega)} = \frac{|E|}{n}$$

- Experiment: finitely many outcomes, or countably (listably) many
- **2** Sample space: $\Omega = \{s_1, s_2, s_3, ..., s_n\}$ or $\Omega = \{s_1, s_2, s_3, ...\}$
- **Probabilities**: $Pr(s_1)$, $Pr(s_2)$, $Pr(s_3)$, . . ., assigned based on analysis of experiment, with each $Pr(s_i) \ge 0$ and

$$\Pr(s_1) + \Pr(s_2) + \Pr(s_3) + \ldots = 1$$

- Solution Probability of event: If $E = \{s_1, s_2, \dots, s_k\}$, $Pr(E) = Pr(s_1) + Pr(s_2) + Pr(s_3) + \dots + Pr(s_k)$
- **O Discrete** <u>uniform</u> models: If $\Omega = \{s_1, s_2, \dots, s_n\}$ (finite) and

$$\Pr(s_1) = \Pr(s_2) = \ldots = \Pr(s_n) \ (= 1/n)$$

then

$$\Pr(E) = \frac{\#(\text{outcomes in } E)}{\#(\text{outcomes in } \Omega)} = \frac{|E|}{n}$$

This was 17th century (Fermat, Pascal) definition of probability