Discrete probability models

Math 30530, Fall 2013

August 28, 2013

Discrete probability models

(1) Experiment: finitely many outcomes, or countably (listably) many

Discrete probability models

(1) Experiment: finitely many outcomes, or countably (listably) many
(2) Sample space: $\Omega=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$ or $\Omega=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$

Discrete probability models

(1) Experiment: finitely many outcomes, or countably (listably) many
(2) Sample space: $\Omega=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$ or $\Omega=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$
(3) Probabilities: $\operatorname{Pr}\left(s_{1}\right), \operatorname{Pr}\left(s_{2}\right), \operatorname{Pr}\left(s_{3}\right), \ldots$, assigned based on analysis of experiment, with each $\operatorname{Pr}\left(s_{i}\right) \geq 0$ and

$$
\operatorname{Pr}\left(s_{1}\right)+\operatorname{Pr}\left(s_{2}\right)+\operatorname{Pr}\left(s_{3}\right)+\ldots=1
$$

Discrete probability models

(1) Experiment: finitely many outcomes, or countably (listably) many
(2) Sample space: $\Omega=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$ or $\Omega=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$
(3) Probabilities: $\operatorname{Pr}\left(s_{1}\right), \operatorname{Pr}\left(s_{2}\right), \operatorname{Pr}\left(s_{3}\right), \ldots$, assigned based on analysis of experiment, with each $\operatorname{Pr}\left(s_{i}\right) \geq 0$ and

$$
\operatorname{Pr}\left(s_{1}\right)+\operatorname{Pr}\left(s_{2}\right)+\operatorname{Pr}\left(s_{3}\right)+\ldots=1
$$

(4) Probability of event: If $E=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$,

$$
\operatorname{Pr}(E)=\operatorname{Pr}\left(s_{1}\right)+\operatorname{Pr}\left(s_{2}\right)+\operatorname{Pr}\left(s_{3}\right)+\ldots+\operatorname{Pr}\left(s_{k}\right)
$$

Discrete probability models

(1) Experiment: finitely many outcomes, or countably (listably) many
(2) Sample space: $\Omega=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$ or $\Omega=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$
(0) Probabilities: $\operatorname{Pr}\left(s_{1}\right), \operatorname{Pr}\left(s_{2}\right), \operatorname{Pr}\left(s_{3}\right), \ldots$, assigned based on analysis of experiment, with each $\operatorname{Pr}\left(s_{i}\right) \geq 0$ and

$$
\operatorname{Pr}\left(s_{1}\right)+\operatorname{Pr}\left(s_{2}\right)+\operatorname{Pr}\left(s_{3}\right)+\ldots=1
$$

(9) Probability of event: If $E=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$,

$$
\operatorname{Pr}(E)=\operatorname{Pr}\left(s_{1}\right)+\operatorname{Pr}\left(s_{2}\right)+\operatorname{Pr}\left(s_{3}\right)+\ldots+\operatorname{Pr}\left(s_{k}\right)
$$

(0) Discrete uniform models: If $\Omega=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ (finite) and

$$
\operatorname{Pr}\left(s_{1}\right)=\operatorname{Pr}\left(s_{2}\right)=\ldots=\operatorname{Pr}\left(s_{n}\right)(=1 / n)
$$

then

$$
\operatorname{Pr}(E)=\frac{\#(\text { outcomes in } E)}{\#(\text { outcomes in } \Omega)}=\frac{|E|}{n}
$$

Discrete probability models

(1) Experiment: finitely many outcomes, or countably (listably) many
(2) Sample space: $\Omega=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$ or $\Omega=\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$
(0) Probabilities: $\operatorname{Pr}\left(s_{1}\right), \operatorname{Pr}\left(s_{2}\right), \operatorname{Pr}\left(s_{3}\right), \ldots$, assigned based on analysis of experiment, with each $\operatorname{Pr}\left(s_{i}\right) \geq 0$ and

$$
\operatorname{Pr}\left(s_{1}\right)+\operatorname{Pr}\left(s_{2}\right)+\operatorname{Pr}\left(s_{3}\right)+\ldots=1
$$

(1) Probability of event: If $E=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$,

$$
\operatorname{Pr}(E)=\operatorname{Pr}\left(s_{1}\right)+\operatorname{Pr}\left(s_{2}\right)+\operatorname{Pr}\left(s_{3}\right)+\ldots+\operatorname{Pr}\left(s_{k}\right)
$$

(0) Discrete uniform models: If $\Omega=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ (finite) and

$$
\operatorname{Pr}\left(s_{1}\right)=\operatorname{Pr}\left(s_{2}\right)=\ldots=\operatorname{Pr}\left(s_{n}\right)(=1 / n)
$$

then

$$
\operatorname{Pr}(E)=\frac{\#(\text { outcomes in } E)}{\#(\text { outcomes in } \Omega)}=\frac{|E|}{n}
$$

This was 17th century (Fermat, Pascal) definition of probability

