Continuous uniform probability model

Math 30530, Fall 2013

August 31, 2013

Continuous uniform probability model

- Experiment: Have a region R in the plane, and select a point from it at random (e.g. by throwing a dart at the region), with no bias towards or against any particular part of the region

Continuous uniform probability model

- Experiment: Have a region R in the plane, and select a point from it at random (e.g. by throwing a dart at the region), with no bias towards or against any particular part of the region
(2) Sample space: $\Omega=\{(x, y) \mid(x, y)$ is a point in region $R\}$

Continuous uniform probability model

(1) Experiment: Have a region R in the plane, and select a point from it at random (e.g. by throwing a dart at the region), with no bias towards or against any particular part of the region
(2) Sample space: $\Omega=\{(x, y) \mid(x, y)$ is a point in region $R\}$
(3) Probabilities: For any event E,

$$
\operatorname{Pr}(E)=\frac{\operatorname{Area}(E)}{\operatorname{Area}(R)}
$$

i.e. the probability of the dart landing inside E is proportional to the area of E

Continuous uniform probability model

(1) Experiment: Have a region R in the plane, and select a point from it at random (e.g. by throwing a dart at the region), with no bias towards or against any particular part of the region
(2) Sample space: $\Omega=\{(x, y) \mid(x, y)$ is a point in region $R\}$
(3) Probabilities: For any event E,

$$
\operatorname{Pr}(E)=\frac{\operatorname{Area}(E)}{\operatorname{Area}(R)}
$$

i.e. the probability of the dart landing inside E is proportional to the area of E
(4) Consequence: If p is a particular point in R, then (homework!)

$$
\operatorname{Pr}(p)=0
$$

This is an example of an event that could occur, but has probability 0 of occurring

