Examples involving conditional probability

Math 30530, Fall 2013

September 5, 2013

I'm always late to work

60% of days I walk to work. On those days
\longrightarrow I'm late 80% of the time
\longrightarrow I'm on time 20% of the time 40% of days I drive to work. On those days \longrightarrow I'm late 50% of the time
\longrightarrow I'm on time 50% of the time

I'm always late to work

60% of days I walk to work. On those days
$\quad \longrightarrow$ I'm late 80% of the time

40% of days I drive to work. On those days
$\quad \longrightarrow$ I'm late 50% of the time
\longrightarrow I'm on time 50% of the time

Question 1: What's the probability that I'm late for work?

I'm always late to work

> 60% of days I walk to work. On those days \longrightarrow I'm late 80% of the time
> \longrightarrow I'm on time 20% of the time
> 40% of days I drive to work. On those days \longrightarrow I'm late 50% of the time
> \longrightarrow I'm on time 50% of the time

Question 1: What's the probability that l'm late for work?
Answer: $\operatorname{Pr}(L)=\operatorname{Pr}(L \cap W)+\operatorname{Pr}(L \cap D)=$
$\operatorname{Pr}(W) \operatorname{Pr}(L \mid W)+\operatorname{Pr}(D) \operatorname{Pr}(L \mid D)=(.6)(.8)+(.4)(.5)=.68$

I'm always late to work

> 60% of days I walk to work. On those days \longrightarrow I'm late 80% of the time
> \longrightarrow I'm on time 20% of the time 40% of days I drive to work. On those days \longrightarrow I'm late 50% of the time
> \longrightarrow I'm on time 50% of the time

Question 1: What's the probability that l'm late for work?
Answer: $\operatorname{Pr}(L)=\operatorname{Pr}(L \cap W)+\operatorname{Pr}(L \cap D)=$
$\operatorname{Pr}(W) \operatorname{Pr}(L \mid W)+\operatorname{Pr}(D) \operatorname{Pr}(L \mid D)=(.6)(.8)+(.4)(.5)=.68$
Question 2: On a day that I'm late for work, what's the probability that I drove?

I'm always late to work

> 60% of days I walk to work. On those days \longrightarrow I'm late 80% of the time
> \longrightarrow I'm on time 20% of the time
> 40% of days I drive to work. On those days
> \longrightarrow I'm late 50% of the time
> \longrightarrow I'm on time 50% of the time

Question 1: What's the probability that l'm late for work?
Answer: $\operatorname{Pr}(L)=\operatorname{Pr}(L \cap W)+\operatorname{Pr}(L \cap D)=$
$\operatorname{Pr}(W) \operatorname{Pr}(L \mid W)+\operatorname{Pr}(D) \operatorname{Pr}(L \mid D)=(.6)(.8)+(.4)(.5)=.68$
Question 2: On a day that I'm late for work, what's the probability that I drove?
Answer: $\operatorname{Pr}(D \mid L)=\frac{\operatorname{Pr}(D \cap L)}{\operatorname{Pr}(L)}=\frac{(.4)(.5)}{.68} \approx .29$.

I got a flush!

I draw 5 cards from a well-shuffled deck.

I got a flush!

I draw 5 cards from a well-shuffled deck.

Question: What's the probability that all 5 cards are hearts?

I got a flush!

I draw 5 cards from a well-shuffled deck.

Question: What's the probability that all 5 cards are hearts?
Answer: Let A_{i} be the event that the i th card drawn is a heart

I got a flush!

I draw 5 cards from a well-shuffled deck.

Question: What's the probability that all 5 cards are hearts?
Answer: Let A_{i} be the event that the i th card drawn is a heart

$$
\begin{aligned}
\operatorname{Pr}\left(A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5}\right)= & \operatorname{Pr}\left(A_{1}\right) \times \operatorname{Pr}\left(A_{2} \mid A_{1}\right) \times \\
& \operatorname{Pr}\left(A_{3} \mid A_{1} \cap A_{2}\right) \times \operatorname{Pr}\left(A_{4} \mid A_{1} \cap A_{2} \cap A_{3}\right) \times \\
& \operatorname{Pr}\left(A_{5} \mid A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right) \\
= & \left(\frac{13}{52}\right)\left(\frac{12}{51}\right)\left(\frac{11}{50}\right)\left(\frac{10}{49}\right)\left(\frac{9}{48}\right)
\end{aligned}
$$

I got a flush!

I draw 5 cards from a well-shuffled deck.

Question: What's the probability that all 5 cards are hearts?
Answer: Let A_{i} be the event that the i th card drawn is a heart

$$
\begin{aligned}
\operatorname{Pr}\left(A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5}\right)= & \operatorname{Pr}\left(A_{1}\right) \times \operatorname{Pr}\left(A_{2} \mid A_{1}\right) \times \\
& \operatorname{Pr}\left(A_{3} \mid A_{1} \cap A_{2}\right) \times \operatorname{Pr}\left(A_{4} \mid A_{1} \cap A_{2} \cap A_{3}\right) \times \\
& \operatorname{Pr}\left(A_{5} \mid A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right) \\
= & \left(\frac{13}{52}\right)\left(\frac{12}{51}\right)\left(\frac{11}{50}\right)\left(\frac{10}{49}\right)\left(\frac{9}{48}\right) \\
= & \frac{13 \times 12 \times 11 \times 10 \times 9}{52 \times 51 \times 50 \times 49 \times 48}
\end{aligned}
$$

Am I at the gym?

- If I go to the gym today, there's an 80% chance that l'll go tomorrow
- If I skip the gym today, there's a 40% chance that l'll go tomorrow
- I go to the gym today.

Am I at the gym?

- If I go to the gym today, there's an 80% chance that l'll go tomorrow
- If I skip the gym today, there's a 40% chance that l'll go tomorrow
- I go to the gym today.

Question: What's the probability that I go 30 days from now?

Am I at the gym?

- If I go to the gym today, there's an 80% chance that l'll go tomorrow
- If I skip the gym today, there's a 40% chance that l'll go tomorrow
- I go to the gym today.

Question: What's the probability that I go 30 days from now?
Answer: Let $G_{i}=\{I$ go to the gym on day $i\}$ (today is day 0)

Am I at the gym?

- If I go to the gym today, there's an 80% chance that l'll go tomorrow
- If I skip the gym today, there's a 40% chance that l'll go tomorrow
- I go to the gym today.

Question: What's the probability that I go 30 days from now?
Answer: Let $G_{i}=\{I$ go to the gym on day $i\}$ (today is day 0)

$$
\operatorname{Pr}\left(G_{0}\right)=1
$$

Am I at the gym?

- If I go to the gym today, there's an 80% chance that l'll go tomorrow
- If I skip the gym today, there's a 40% chance that l'll go tomorrow
- I go to the gym today.

Question: What's the probability that I go 30 days from now?
Answer: Let $G_{i}=\{I$ go to the gym on day $i\}$ (today is day 0)

$$
\begin{aligned}
& \operatorname{Pr}\left(G_{0}\right)=1 \\
& \operatorname{Pr}\left(G_{1}\right)=.8
\end{aligned}
$$

Am I at the gym?

$$
\begin{aligned}
\operatorname{Pr}\left(G_{2}\right) & =\operatorname{Pr}\left(G_{2} \cap G_{1}\right)+\operatorname{Pr}\left(G_{2} \cap G_{1}^{c}\right) \\
& =\operatorname{Pr}\left(G_{1}\right) \operatorname{Pr}\left(G_{2} \mid G_{1}\right)+\operatorname{Pr}\left(G_{1}^{c}\right) \operatorname{Pr}\left(G_{2} \mid G_{1}^{c}\right) \\
& =.8 \operatorname{Pr}\left(G_{1}\right)+.4\left(1-\operatorname{Pr}\left(G_{1}\right)\right) \\
& =.4 \operatorname{Pr}\left(G_{1}\right)+.4(=.72)
\end{aligned}
$$

Am I at the gym?

$$
\begin{aligned}
\operatorname{Pr}\left(G_{2}\right) & =\operatorname{Pr}\left(G_{2} \cap G_{1}\right)+\operatorname{Pr}\left(G_{2} \cap G_{1}^{c}\right) \\
& =\operatorname{Pr}\left(G_{1}\right) \operatorname{Pr}\left(G_{2} \mid G_{1}\right)+\operatorname{Pr}\left(G_{1}^{c}\right) \operatorname{Pr}\left(G_{2} \mid G_{1}^{c}\right) \\
& =.8 \operatorname{Pr}\left(G_{1}\right)+.4\left(1-\operatorname{Pr}\left(G_{1}\right)\right) \\
& =.4 \operatorname{Pr}\left(G_{1}\right)+.4(=.72) \\
\operatorname{Pr}\left(G_{3}\right) & =\operatorname{Pr}\left(G_{2}\right) \operatorname{Pr}\left(G_{3} \mid G_{2}\right)+\operatorname{Pr}\left(G_{2}^{C}\right) \operatorname{Pr}\left(G_{3} \mid G_{2}^{c}\right) \\
& =.8 \operatorname{Pr}\left(G_{2}\right)+.4\left(1-\operatorname{Pr}\left(G_{2}\right)\right) \\
& =.4 \operatorname{Pr}\left(G_{2}\right)+.4(=.688)
\end{aligned}
$$

Am I at the gym?

$$
\begin{aligned}
\operatorname{Pr}\left(G_{2}\right) & =\operatorname{Pr}\left(G_{2} \cap G_{1}\right)+\operatorname{Pr}\left(G_{2} \cap G_{1}^{c}\right) \\
& =\operatorname{Pr}\left(G_{1}\right) \operatorname{Pr}\left(G_{2} \mid G_{1}\right)+\operatorname{Pr}\left(G_{1}^{c}\right) \operatorname{Pr}\left(G_{2} \mid G_{1}^{c}\right) \\
& =.8 \operatorname{Pr}\left(G_{1}\right)+.4\left(1-\operatorname{Pr}\left(G_{1}\right)\right) \\
& =.4 \operatorname{Pr}\left(G_{1}\right)+.4(=.72) \\
\operatorname{Pr}\left(G_{3}\right) & =\operatorname{Pr}\left(G_{2}\right) \operatorname{Pr}\left(G_{3} \mid G_{2}\right)+\operatorname{Pr}\left(G_{2}^{c}\right) \operatorname{Pr}\left(G_{3} \mid G_{2}^{c}\right) \\
& =.8 \operatorname{Pr}\left(G_{2}\right)+.4\left(1-\operatorname{Pr}\left(G_{2}\right)\right) \\
& =.4 \operatorname{Pr}\left(G_{2}\right)+.4(=.688)
\end{aligned}
$$

In general,

$$
\begin{aligned}
\operatorname{Pr}\left(G_{n}\right) & =\operatorname{Pr}\left(G_{n-1}\right) \operatorname{Pr}\left(G_{n} \mid G_{n-1}\right)+\operatorname{Pr}\left(G_{n-1}^{c}\right) \operatorname{Pr}\left(G_{n} \mid G_{n-1}^{c}\right) \\
& =.8 \operatorname{Pr}\left(G_{n-1}\right)+.4\left(1-\operatorname{Pr}\left(G_{n-1}\right)\right) \\
& =.4 \operatorname{Pr}\left(G_{n-1}\right)+.4
\end{aligned}
$$

Am I at the gym?

$$
\begin{aligned}
\operatorname{Pr}\left(G_{2}\right) & =\operatorname{Pr}\left(G_{2} \cap G_{1}\right)+\operatorname{Pr}\left(G_{2} \cap G_{1}^{c}\right) \\
& =\operatorname{Pr}\left(G_{1}\right) \operatorname{Pr}\left(G_{2} \mid G_{1}\right)+\operatorname{Pr}\left(G_{1}^{c}\right) \operatorname{Pr}\left(G_{2} \mid G_{1}^{c}\right) \\
& =.8 \operatorname{Pr}\left(G_{1}\right)+.4\left(1-\operatorname{Pr}\left(G_{1}\right)\right) \\
& =.4 \operatorname{Pr}\left(G_{1}\right)+.4(=.72) \\
\operatorname{Pr}\left(G_{3}\right) & =\operatorname{Pr}\left(G_{2}\right) \operatorname{Pr}\left(G_{3} \mid G_{2}\right)+\operatorname{Pr}\left(G_{2}^{c}\right) \operatorname{Pr}\left(G_{3} \mid G_{2}^{c}\right) \\
& =.8 \operatorname{Pr}\left(G_{2}\right)+.4\left(1-\operatorname{Pr}\left(G_{2}\right)\right) \\
& =.4 \operatorname{Pr}\left(G_{2}\right)+.4(=.688)
\end{aligned}
$$

In general,

$$
\begin{aligned}
\operatorname{Pr}\left(G_{n}\right) & =\operatorname{Pr}\left(G_{n-1}\right) \operatorname{Pr}\left(G_{n} \mid G_{n-1}\right)+\operatorname{Pr}\left(G_{n-1}^{c}\right) \operatorname{Pr}\left(G_{n} \mid G_{n-1}^{c}\right) \\
& =.8 \operatorname{Pr}\left(G_{n-1}\right)+.4\left(1-\operatorname{Pr}\left(G_{n-1}\right)\right) \\
& =.4 \operatorname{Pr}\left(G_{n-1}\right)+.4
\end{aligned}
$$

$\operatorname{Pr}\left(G_{30}\right) \approx \frac{2}{3}+10^{-12}$, and for n above about $10, \operatorname{Pr}\left(G_{n}\right)$ basically indistinguishable from 2/3

