The basic elements of probability

Math 30530, Fall 2013

August 28, 2013

Elements of probability

(1) Experiment: involving chance, with measurable outcomes

Elements of probability

(1) Experiment: involving chance, with measurable outcomes
(2) Sample space Ω : exhaustive list of mutually exclusive outcomes

Elements of probability

(1) Experiment: involving chance, with measurable outcomes
(2) Sample space Ω : exhaustive list of mutually exclusive outcomes
(3) Events: subsets of outcomes representing things we're interesting in knowing probabilities of

Elements of probability

(1) Experiment: involving chance, with measurable outcomes
(2) Sample space Ω : exhaustive list of mutually exclusive outcomes
(3) Events: subsets of outcomes representing things we're interesting in knowing probabilities of
(4) Probability law Pr: assigns to each event a number, representing how likely that event is to occur on running experiment ($0-$ impossible; 1 - always; 2/3-2 out of every 3 times).

Elements of probability

(1) Experiment: involving chance, with measurable outcomes
(2) Sample space Ω : exhaustive list of mutually exclusive outcomes
(3) Events: subsets of outcomes representing things we're interesting in knowing probabilities of
(4) Probability law Pr: assigns to each event a number, representing how likely that event is to occur on running experiment ($0-$ impossible; 1 - always; 2/3-2 out of every 3 times). Pr satisfies three axioms of probability:
(- $\operatorname{Pr}(A) \geq 0$ for all events A

Elements of probability

(1) Experiment: involving chance, with measurable outcomes
(2) Sample space Ω : exhaustive list of mutually exclusive outcomes
(3) Events: subsets of outcomes representing things we're interesting in knowing probabilities of
(4) Probability law Pr: assigns to each event a number, representing how likely that event is to occur on running experiment ($0-$ impossible; 1 - always; 2/3-2 out of every 3 times). Pr satisfies three axioms of probability:
(0) $\operatorname{Pr}(A) \geq 0$ for all events A
(2) $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$ for disjoint A, B,

Elements of probability

(1) Experiment: involving chance, with measurable outcomes
(3) Sample space Ω : exhaustive list of mutually exclusive outcomes
(Events: subsets of outcomes representing things we're interesting in knowing probabilities of
(1) Probability law Pr: assigns to each event a number, representing how likely that event is to occur on running experiment (0 impossible; 1 - always; $2 / 3-2$ out of every 3 times). Pr satisfies three axioms of probability:
(0) $\operatorname{Pr}(A) \geq 0$ for all events A
(2) $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$ for disjoint A, B, and more generally

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup A_{3} \cup \ldots\right)=\operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\operatorname{Pr}\left(A_{3}\right)+\ldots
$$

for mutually disjoint $A_{1}, A_{2}, A_{3}, \ldots$.

Elements of probability

- Experiment: involving chance, with measurable outcomes
(2) Sample space Ω : exhaustive list of mutually exclusive outcomes
(Events: subsets of outcomes representing things we're interesting in knowing probabilities of
(1) Probability law Pr: assigns to each event a number, representing how likely that event is to occur on running experiment (0 impossible; 1 - always; $2 / 3-2$ out of every 3 times). Pr satisfies three axioms of probability:
(0) $\operatorname{Pr}(A) \geq 0$ for all events A
(2) $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$ for disjoint A, B, and more generally

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup A_{3} \cup \ldots\right)=\operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\operatorname{Pr}\left(A_{3}\right)+\ldots
$$ for mutually disjoint $A_{1}, A_{2}, A_{3}, \ldots$.

(3) $\operatorname{Pr}(\Omega)=1$

