CHAPTER 4

Solution to Problem 4.1. Let $Y=\sqrt{|X|}$. We have, for $0 \leq y \leq 1$,

$$
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}(\sqrt{|X|} \leq y)=\mathbf{P}\left(-y^{2} \leq X \leq y^{2}\right)=y^{2}
$$

and therefore by differentiation,

$$
f_{Y}(y)=2 y, \quad \text { for } 0 \leq y \leq 1
$$

Let $Y=-\ln |X|$. We have, for $y \geq 0$,

$$
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}(\ln |X| \geq-y)=\mathbf{P}\left(X \geq e^{-y}\right)+\mathbf{P}\left(X \leq-e^{-y}\right)=1-e^{-y}
$$

and therefore by differentiation

$$
f_{Y}(y)=e^{-y}, \quad \text { for } y \geq 0
$$

so Y is an exponential random variable with parameter 1. This exercise provides a method for simulating an exponential random variable using a sample of a uniform random variable.
Solution to Problem 4.2. Let $Y=e^{X}$. We first find the CDF of Y, and then take the derivative to find its PDF. We have

$$
\mathbf{P}(Y \leq y)=\mathbf{P}\left(e^{X} \leq y\right)= \begin{cases}\mathbf{P}(X \leq \ln y), & \text { if } y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Therefore,

$$
\begin{aligned}
f_{Y}(y) & = \begin{cases}\frac{d}{d x} F_{X}(\ln y), & \text { if } y>0 \\
0, & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{1}{y} f_{X}(\ln y), & \text { if } y>0 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

When X is uniform on $[0,1]$, the answer simplifies to

$$
f_{Y}(y)= \begin{cases}\frac{1}{y}, & \text { if } 0<y \leq e \\ 0, & \text { otherwise }\end{cases}
$$

Solution to Problem 4.3. Let $Y=|X|^{1 / 3}$. We have

$$
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(|X|^{1 / 3} \leq y\right)=\mathbf{P}\left(-y^{3} \leq X \leq y^{3}\right)=F_{X}\left(y^{3}\right)-F_{X}\left(-y^{3}\right)
$$

and therefore, by differentiating,

$$
f_{Y}(y)=3 y^{2} f_{X}\left(y^{3}\right)+3 y^{2} f_{X}\left(-y^{3}\right), \quad \text { for } y>0 .
$$

Let $Y=|X|^{1 / 4}$. We have

$$
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}\left(|X|^{1 / 4} \leq y\right)=\mathbf{P}\left(-y^{4} \leq X \leq y^{4}\right)=F_{X}\left(y^{4}\right)-F_{X}\left(-y^{4}\right)
$$

and therefore, by differentiating,

$$
f_{Y}(y)=4 y^{3} f_{X}\left(y^{4}\right)+4 y^{3} f_{X}\left(-y^{4}\right), \quad \text { for } y>0 .
$$

Solution to Problem 4.4. We have

$$
F_{Y}(y)= \begin{cases}0, & \text { if } y \leq 0, \\ \mathbf{P}(5-y \leq X \leq 5)+\mathbf{P}(20-y \leq X \leq 20), & \text { if } 0 \leq y \leq 5, \\ \mathbf{P}(20-y \leq X \leq 20), & \text { if } 5<y \leq 15, \\ 1, & \text { if } y>15\end{cases}
$$

Using the CDF of X, we have

$$
\begin{gathered}
\mathbf{P}(5-y \leq X \leq 5)=F_{X}(5)-F_{X}(5-y), \\
\mathbf{P}(20-y \leq X \leq 20)=F_{X}(20)-F_{X}(20-y) .
\end{gathered}
$$

Thus,

$$
F_{Y}(y)= \begin{cases}0, & \text { if } y \leq 0 \\ F_{X}(5)-F_{X}(5-y)+F_{X}(20)-F_{X}(20-y), & \text { if } 0 \leq y \leq 5 \\ F_{X}(20)-F_{X}(20-y), & \text { if } 5<y \leq 15 \\ 1, & \text { if } y>15\end{cases}
$$

Differentiating, we obtain

$$
f_{Y}(y)= \begin{cases}f_{X}(5-y)+f_{X}(20-y), & \text { if } 0 \leq y \leq 5 \\ f_{X}(20-y), & \text { if } 5<y \leq 15 \\ 0, & \text { otherwise }\end{cases}
$$

consistent with the result of Example 3.14.
Solution to Problem 4.5. Let $Z=|X-Y|$. We have

$$
F_{Z}(z)=P(|X-Y| \leq z)=1-(1-z)^{2} .
$$

(To see this, draw the event of interest as a subset of the unit square and calculate its area.) Taking derivatives, the desired PDF is

$$
f_{Z}(z)= \begin{cases}2(1-z), & \text { if } 0 \leq z \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Solution to Problem 4.6. Let $Z=|X-Y|$. To find the CDF, we integrate the joint PDF of X and Y over the region where $|X-Y| \leq z$ for a given z. In the case where $z \leq 0$ or $z \geq 1$, the CDF is 0 and 1 , respectively. In the case where $0<z<1$, we have

$$
F_{Z}(z)=\mathbf{P}(X-Y \leq z, X \geq Y)+\mathbf{P}(Y-X \leq z, X<Y)
$$

The events $\{X-Y \leq z, X \geq Y\}$ and $\{Y-X \leq z, X<Y\}$ can be identified with subsets of the given triangle. After some calculation using triangle geometry, the areas of these subsets can be verified to be $z / 2+z^{2} / 4$ and $1 / 4-(1-z)^{2} / 4$, respectively. Therefore, since $f_{X, Y}(x, y)=1$ for all (x, y) in the given triangle,

$$
F_{Z}(z)=\left(\frac{z}{2}+\frac{z^{2}}{4}\right)+\left(\frac{1}{4}-\frac{(1-z)^{2}}{4}\right)=z
$$

Thus,

$$
F_{Z}(z)= \begin{cases}0, & \text { if } z \leq 0 \\ z, & \text { if } 0<z<1 \\ 1, & \text { if } z \geq 1\end{cases}
$$

By taking the derivative with respect to z, we obtain

$$
f_{Z}(z)= \begin{cases}1, & \text { if } 0 \leq z \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Solution to Problem 4.7. Let X and Y be the two points, and let $Z=\max \{X, Y\}$. For any $t \in[0,1]$, we have

$$
\mathbf{P}(Z \leq t)=\mathbf{P}(X \leq t) \mathbf{P}(Y \leq t)=t^{2}
$$

and by differentiating, the corresponding PDF is

$$
f_{Z}(z)= \begin{cases}0, & \text { if } z \leq 0 \\ 2 z, & \text { if } 0 \leq z \leq 1 \\ 0, & \text { if } z \geq 1\end{cases}
$$

Thus, we have

$$
\mathbf{E}[Z]=\int_{-\infty}^{\infty} z f_{Z}(z) d z=\int_{0}^{1} 2 z^{2} d z=\frac{2}{3}
$$

The distance of the largest of the two points to the right endpoint is $1-Z$, and its expected value is $1-\mathbf{E}[Z]=1 / 3$. A symmetric argument shows that the distance of the smallest of the two points to the left endpoint is also $1 / 3$. Therefore, the expected distance between the two points must also be $1 / 3$.
Solution to Problem 4.8. Note that $f_{X}(x)$ and $f_{Y}(z-x)$ are nonzero only when $x \geq 0$ and $x \leq z$, respectively. Thus, in the convolution formula, we only need to integrate for x ranging from 0 to z :
$f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x=\int_{0}^{z} \lambda e^{-\lambda x} \lambda e^{-\lambda(z-x)} d x=\lambda^{2} e^{-z} \int_{0}^{z} d x=\lambda^{2} z e^{-\lambda z}$

Solution to Problem 4.9. Let $Z=X-Y$. We will first calculate the $\operatorname{CDF} F_{Z}(z)$ by considering separately the cases $z \geq 0$ and $z<0$. For $z \geq 0$, we have (see the left side of Fig. 4.6)

$$
\begin{aligned}
F_{Z}(z) & =\mathbf{P}(X-Y \leq z) \\
& =1-\mathbf{P}(X-Y>z) \\
& =1-\int_{0}^{\infty}\left(\int_{z+y}^{\infty} f_{X, Y}(x, y) d x\right) d y \\
& =1-\int_{0}^{\infty} \mu e^{-\mu y}\left(\int_{z+y}^{\infty} \lambda e^{-\lambda x} d x\right) d y \\
& =1-\int_{0}^{\infty} \mu e^{-\mu y} e^{-\lambda(z+y)} d y \\
& =1-e^{-\lambda z} \int_{0}^{\infty} \mu e^{-(\lambda+\mu) y} d y \\
& =1-\frac{\mu}{\lambda+\mu} e^{-\lambda z} .
\end{aligned}
$$

For the case $z<0$, we have using the preceding calculation

$$
F_{Z}(z)=1-F_{Z}(-z)=1-\left(1-\frac{\lambda}{\lambda+\mu} e^{-\mu(-z)}\right)=\frac{\lambda}{\lambda+\mu} e^{\mu z}
$$

Combining the two cases $z \geq 0$ and $z<0$, we obtain

$$
F_{Z}(z)= \begin{cases}1-\frac{\mu}{\lambda+\mu} e^{-\lambda z}, & \text { if } z \geq 0 \\ \frac{\lambda}{\lambda+\mu} e^{\mu z}, & \text { if } z<0\end{cases}
$$

The PDF of Z is obtained by differentiating its CDF. We have

$$
f_{Z}(z)= \begin{cases}\frac{\lambda \mu}{\lambda+\mu} e^{-\lambda z}, & \text { if } z \geq 0 \\ \frac{\lambda \mu}{\lambda+\mu} e^{\mu z}, & \text { if } z<0\end{cases}
$$

For an alternative solution, fix some $z \geq 0$ and note that $f_{Y}(x-z)$ is nonzero only when $x \geq z$. Thus,

$$
\begin{aligned}
f_{X-Y}(z) & =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(x-z) d x \\
& =\int_{z}^{\infty} \lambda e^{-\lambda x} \mu e^{-\mu(x-z)} d x \\
& =\lambda \mu e^{\lambda z} \int_{z}^{\infty} e^{-(\lambda+\mu) x} d x \\
& =\lambda \mu e^{\lambda z} \frac{1}{\lambda+\mu} e^{-(\lambda+\mu) z} \\
& =\frac{\lambda \mu}{\lambda+\mu} e^{-\mu z}
\end{aligned}
$$

