$$
F_{Z}(z)= \begin{cases}0, & \text { if } z<0 \\ 1-e^{-\lambda z}, & \text { if } z \geq 0\end{cases}
$$

We have $f_{X}(x)=p f_{Y}(x)+(1-p) f_{Z}(x)$, and consequently $F_{X}(x)=p F_{Y}(x)+(1-$ p) $F_{Z}(x)$. It follows that

$$
\begin{aligned}
F_{X}(x) & = \begin{cases}p e^{\lambda x}, & \text { if } x<0 \\
p+(1-p)\left(1-e^{-\lambda x}\right), & \text { if } x \geq 0\end{cases} \\
& = \begin{cases}p e^{\lambda x}, & \text { if } x<0 \\
1-(1-p) e^{-\lambda x}, & \text { if } x \geq 0\end{cases}
\end{aligned}
$$

Solution to Problem 3.11. (a) X is a standard normal, so by using the normal table, we have $\mathbf{P}(X \leq 1.5)=\Phi(1.5)=0.9332$. Also $\mathbf{P}(X \leq-1)=1-\Phi(1)=$ $1-0.8413=0.1587$.
(b) The random variable $(Y-1) / 2$ is obtained by subtracting from Y its mean (which is 1) and dividing by the standard deviation (which is 2), so the PDF of $(Y-1) / 2$ is the standard normal.
(c) We have, using the normal table,

$$
\begin{aligned}
\mathbf{P}(-1 \leq Y \leq 1) & =\mathbf{P}(-1 \leq(Y-1) / 2 \leq 0) \\
& =\mathbf{P}(-1 \leq Z \leq 0) \\
& =\mathbf{P}(0 \leq Z \leq 1) \\
& =\Phi(1)-\Phi(0) \\
& =0.8413-0.5 \\
& =0.3413,
\end{aligned}
$$

where Z is a standard normal random variable.
Solution to Problem 3.12. The random variable $Z=X / \sigma$ is a standard normal, so

$$
\mathbf{P}(X \geq k \sigma)=\mathbf{P}(Z \geq k)=1-\Phi(k)
$$

From the normal tables we have

$$
\Phi(1)=0.8413, \quad \Phi(2)=0.9772, \quad \Phi(3)=0.9986
$$

Thus $\mathbf{P}(X \geq \sigma)=0.1587, \mathbf{P}(X \geq 2 \sigma)=0.0228, \mathbf{P}(X \geq 3 \sigma)=0.0014$.
We also have

$$
\mathbf{P}(|X| \leq k \sigma)=\mathbf{P}(|Z| \leq k)=\Phi(k)-\mathbf{P}(Z \leq-k)=\Phi(k)-(1-\Phi(k))=2 \Phi(k)-1
$$

Using the normal table values above, we obtain

$$
\mathbf{P}(|X| \leq \sigma)=0.6826, \quad \mathbf{P}(|X| \leq 2 \sigma)=0.9544, \quad \mathbf{P}(|X| \leq 3 \sigma)=0.9972
$$

where t is a standard normal random variable.

Solution to Problem 3.13. Let X and Y be the temperature in Celsius and Fahrenheit, respectively, which are related by $X=5(Y-32) / 9$. Therefore, 59 degrees Fahrenheit correspond to 15 degrees Celsius. So, if Z is a standard normal random variable, we have using $\mathbf{E}[X]=\sigma_{X}=10$,

$$
\mathbf{P}(Y \leq 59)=\mathbf{P}(X \leq 15)=\mathbf{P}\left(Z \leq \frac{15-\mathbf{E}[X]}{\sigma_{X}}\right)=\mathbf{P}(Z \leq 0.5)=\Phi(0.5) .
$$

From the normal tables we have $\Phi(0.5)=0.6915$, so $\mathbf{P}(Y \leq 59)=0.6915$.
Solution to Problem 3.15. (a) Since the area of the semicircle is $\pi r^{2} / 2$, the joint PDF of X and Y is $f_{X, Y}(x, y)=2 / \pi r^{2}$, for (x, y) in the semicircle, and $f_{X, Y}(x, y)=0$, otherwise.
(b) To find the marginal PDF of Y, we integrate the joint PDF over the range of X. For any possible value y of Y, the range of possible values of X is the interval $\left[-\sqrt{r^{2}-y^{2}}, \sqrt{r^{2}-y^{2}}\right]$, and we have

$$
f_{Y}(y)=\int_{-\sqrt{r^{2}-y^{2}}}^{\sqrt{r^{2}-y^{2}}} \frac{2}{\pi r^{2}} d x= \begin{cases}\frac{4 \sqrt{r^{2}-y^{2}}}{\pi r^{2}}, & \text { if } 0 \leq y \leq r \\ 0, & \text { otherwise }\end{cases}
$$

Thus,

$$
\mathbf{E}[Y]=\frac{4}{\pi r^{2}} \int_{0}^{r} y \sqrt{r^{2}-y^{2}} d y=\frac{4 r}{3 \pi},
$$

where the integration is performed using the substitution $z=r^{2}-y^{2}$.
(c) There is no need to find the marginal $\operatorname{PDF} f_{Y}$ in order to find $\mathbf{E}[Y]$. Let D denote the semicircle. We have, using polar coordinates

$$
\mathbf{E}[Y]=\int_{(x, y) \in D} \int_{X} y f_{X, Y}(x, y) d x d y=\int_{0}^{\pi} \int_{0}^{r} \frac{2}{\pi r^{2}} s(\sin \theta) s d s d \theta=\frac{4 r}{3 \pi} .
$$

Solution to Problem 3.16. Let A be the event that the needle will cross a horizontal line, and let B be the probability that it will cross a vertical line. From the analysis of Example 3.11, we have that

$$
\mathbf{P}(A)=\frac{2 l}{\pi a}, \quad \mathbf{P}(B)=\frac{2 l}{\pi b}
$$

Since at most one horizontal (or vertical) line can be crossed, the expected number of horizontal lines crossed is $\mathbf{P}(A)$ [or $\mathbf{P}(B)$, respectively]. Thus the expected number of crossed lines is

$$
\mathbf{P}(A)+\mathbf{P}(B)=\frac{2 l}{\pi a}+\frac{2 l}{\pi b}=\frac{2 l(a+b)}{\pi a b}
$$

The probability that at least one line will be crossed is

$$
\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B) .
$$

