CHAPTER 3

Solution to Problem 3.1. The random variable $Y=g(X)$ is discrete and its PMF is given by

$$
p_{Y}(1)=\mathbf{P}(X \leq 1 / 3)=1 / 3, \quad p_{Y}(2)=1-p_{Y}(1)=2 / 3 .
$$

Thus,

$$
\mathbf{E}[Y]=\frac{1}{3} \cdot 1+\frac{2}{3} \cdot 2=\frac{5}{3} .
$$

The same result is obtained using the expected value rule:

$$
\mathbf{E}[Y]=\int_{0}^{1} g(x) f_{X}(x) d x=\int_{0}^{1 / 3} d x+\int_{1 / 3}^{1} 2 d x=\frac{5}{3}
$$

Solution to Problem 3.2. We have

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{-\infty}^{\infty} \frac{\lambda}{2} e^{-\lambda|x|} d x=2 \cdot \frac{1}{2} \int_{0}^{\infty} \lambda e^{-\lambda x} d x=2 \cdot \frac{1}{2}=1
$$

where we have used the fact $\int_{0}^{\infty} \lambda e^{-\lambda x} d x=1$, i.e., the normalization property of the exponential PDF. By symmetry of the PDF, we have $\mathbf{E}[X]=0$. We also have

$$
\mathbf{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} \frac{\lambda}{2} e^{-\lambda|x|} d x=\int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} d x=\frac{2}{\lambda^{2}},
$$

where we have used the fact that the second moment of the exponential PDF is $2 / \lambda^{2}$. Thus

$$
\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=2 / \lambda^{2}
$$

Solution to Problem 3.5. Let $A=b h / 2$ be the area of the given triangle, where b is the length of the base, and h is the height of the triangle. From the randomly chosen point, draw a line parallel to the base, and let A_{x} be the area of the triangle thus formed. The height of this triangle is $h-x$ and its base has length $b(h-x) / h$. Thus $A_{x}=b(h-x)^{2} /(2 h)$. For $x \in[0, h]$, we have

$$
F_{X}(x)=1-\mathbf{P}(X>x)=1-\frac{A_{x}}{A}=1-\frac{b(h-x)^{2} /(2 h)}{b h / 2}=1-\left(\frac{h-x}{h}\right)^{2}
$$

while $F_{X}(x)=0$ for $x<0$ and $F_{X}(x)=1$ for $x>h$.
The PDF is obtained by differentiating the CDF. We have

$$
f_{X}(x)=\frac{d F_{X}}{d x}(x)= \begin{cases}\frac{2(h-x)}{h^{2}}, & \text { if } 0 \leq x \leq h \\ 0, & \text { otherwise }\end{cases}
$$

Solution to Problem 3.6. Let X be the waiting time and Y be the number of customers found. For $x<0$, we have $F_{X}(x)=0$, while for $x \geq 0$,

$$
F_{X}(x)=\mathbf{P}(X \leq x)=\frac{1}{2} \mathbf{P}(X \leq x \mid Y=0)+\frac{1}{2} \mathbf{P}(X \leq x \mid Y=1)
$$

Since

$$
\begin{gathered}
\mathbf{P}(X \leq x \mid Y=0)=1 \\
\mathbf{P}(X \leq x \mid Y=1)=1-e^{-\lambda x}
\end{gathered}
$$

we obtain

$$
F_{X}(x)= \begin{cases}\frac{1}{2}\left(2-e^{-\lambda x}\right), & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Note that the CDF has a discontinuity at $x=0$. The random variable X is neither discrete nor continuous.

Solution to Problem 3.7. (a) We first calculate the CDF of X. For $x \in[0, r]$, we have

$$
F_{X}(x)=\mathbf{P}(X \leq x)=\frac{\pi x^{2}}{\pi r^{2}}=\left(\frac{x}{r}\right)^{2}
$$

For $x<0$, we have $F_{X}(x)=0$, and for $x>r$, we have $F_{X}(x)=1$. By differentiating, we obtain the PDF

$$
f_{X}(x)= \begin{cases}\frac{2 x}{r^{2}}, & \text { if } 0 \leq x \leq r \\ 0, & \text { otherwise }\end{cases}
$$

We have

$$
\mathbf{E}[X]=\int_{0}^{r} \frac{2 x^{2}}{r^{2}} d x=\frac{2 r}{3}
$$

Also

$$
\mathbf{E}\left[X^{2}\right]=\int_{0}^{r} \frac{2 x^{3}}{r^{2}} d x=\frac{r^{2}}{2}
$$

so

$$
\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\frac{r^{2}}{2}-\frac{4 r^{2}}{9}=\frac{r^{2}}{18}
$$

(b) Alvin gets a positive score in the range $[1 / t, \infty)$ if and only if $X \leq t$, and otherwise he gets a score of 0 . Thus, for $s<0$, the CDF of S is $F_{S}(s)=0$. For $0 \leq s<1 / t$, we have
$F_{S}(s)=\mathbf{P}(S \leq s)=\mathbf{P}$ (Alvin's hit is outside the inner circle $)=1-\mathbf{P}(X \leq t)=1-\frac{t^{2}}{r^{2}}$.
For $1 / t<s$, the CDF of S is given by

$$
F_{S}(s)=\mathbf{P}(S \leq s)=\mathbf{P}(X \leq t) \mathbf{P}(S \leq s \mid X \leq t)+\mathbf{P}(X>t) \mathbf{P}(S \leq s \mid X>t)
$$

We have

$$
\mathbf{P}(X \leq t)=\frac{t^{2}}{r^{2}}, \quad \mathbf{P}(X>t)=1-\frac{t^{2}}{r^{2}},
$$

and since $S=0$ when $X>t$,

$$
\mathbf{P}(S \leq s \mid X>t)=1
$$

Furthermore,
$\mathbf{P}(S \leq s \mid X \leq t)=\mathbf{P}(1 / X \leq s \mid X \leq t)=\frac{\mathbf{P}(1 / s \leq X \leq t)}{\mathbf{P}(X \leq t)}=\frac{\frac{\pi t^{2}-\pi(1 / s)^{2}}{\pi r^{2}}}{\frac{\pi t^{2}}{\pi r^{2}}}=1-\frac{1}{s^{2} t^{2}}$.
Combining the above equations, we obtain

$$
\mathbf{P}(S \leq s)=\frac{t^{2}}{r^{2}}\left(1-\frac{1}{s^{2} t^{2}}\right)+1-\frac{t^{2}}{r^{2}}=1-\frac{1}{s^{2} r^{2}}
$$

Collecting the results of the preceding calculations, the CDF of S is

$$
F_{S}(s)= \begin{cases}0, & \text { if } s<0 \\ 1-\frac{t^{2}}{r^{2}}, & \text { if } 0 \leq s<1 / t \\ 1-\frac{1}{s^{2} r^{2}}, & \text { if } 1 / t \leq s\end{cases}
$$

Because F_{S} has a discontinuity at $s=0$, the random variable S is not continuous.
Solution to Problem 3.8. (a) By the total probability theorem, we have

$$
F_{X}(x)=\mathbf{P}(X \leq x)=p \mathbf{P}(Y \leq x)+(1-p) \mathbf{P}(Z \leq x)=p F_{Y}(x)+(1-p) F_{Z}(x) .
$$

By differentiating, we obtain

$$
f_{X}(x)=p f_{Y}(x)+(1-p) f_{Z}(x) .
$$

(b) Consider the random variable Y that has PDF

$$
f_{Y}(y)= \begin{cases}\lambda e^{\lambda y}, & \text { if } y<0 \\ 0, & \text { otherwise }\end{cases}
$$

and the random variable Z that has PDF

$$
f_{Z}(z)= \begin{cases}\lambda e^{-\lambda z}, & \text { if } y \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

We note that the random variables $-Y$ and Z are exponential. Using the CDF of the exponential random variable, we see that the CDFs of Y and Z are given by

$$
F_{Y}(y)= \begin{cases}e^{\lambda y}, & \text { if } y<0 \\ 1, & \text { if } y \geq 0\end{cases}
$$

$$
F_{Z}(z)= \begin{cases}0, & \text { if } z<0 \\ 1-e^{-\lambda z}, & \text { if } z \geq 0\end{cases}
$$

We have $f_{X}(x)=p f_{Y}(x)+(1-p) f_{Z}(x)$, and consequently $F_{X}(x)=p F_{Y}(x)+(1-$ p) $F_{Z}(x)$. It follows that

$$
\begin{aligned}
F_{X}(x) & = \begin{cases}p e^{\lambda x}, & \text { if } x<0 \\
p+(1-p)\left(1-e^{-\lambda x}\right), & \text { if } x \geq 0\end{cases} \\
& = \begin{cases}p e^{\lambda x}, & \text { if } x<0 \\
1-(1-p) e^{-\lambda x}, & \text { if } x \geq 0\end{cases}
\end{aligned}
$$

Solution to Problem 3.11. (a) X is a standard normal, so by using the normal table, we have $\mathbf{P}(X \leq 1.5)=\Phi(1.5)=0.9332$. Also $\mathbf{P}(X \leq-1)=1-\Phi(1)=$ $1-0.8413=0.1587$.
(b) The random variable $(Y-1) / 2$ is obtained by subtracting from Y its mean (which is 1) and dividing by the standard deviation (which is 2), so the PDF of $(Y-1) / 2$ is the standard normal.
(c) We have, using the normal table,

$$
\begin{aligned}
\mathbf{P}(-1 \leq Y \leq 1) & =\mathbf{P}(-1 \leq(Y-1) / 2 \leq 0) \\
& =\mathbf{P}(-1 \leq Z \leq 0) \\
& =\mathbf{P}(0 \leq Z \leq 1) \\
& =\Phi(1)-\Phi(0) \\
& =0.8413-0.5 \\
& =0.3413,
\end{aligned}
$$

where Z is a standard normal random variable.
Solution to Problem 3.12. The random variable $Z=X / \sigma$ is a standard normal, so

$$
\mathbf{P}(X \geq k \sigma)=\mathbf{P}(Z \geq k)=1-\Phi(k)
$$

From the normal tables we have

$$
\Phi(1)=0.8413, \quad \Phi(2)=0.9772, \quad \Phi(3)=0.9986
$$

Thus $\mathbf{P}(X \geq \sigma)=0.1587, \mathbf{P}(X \geq 2 \sigma)=0.0228, \mathbf{P}(X \geq 3 \sigma)=0.0014$.
We also have

$$
\mathbf{P}(|X| \leq k \sigma)=\mathbf{P}(|Z| \leq k)=\Phi(k)-\mathbf{P}(Z \leq-k)=\Phi(k)-(1-\Phi(k))=2 \Phi(k)-1
$$

Using the normal table values above, we obtain

$$
\mathbf{P}(|X| \leq \sigma)=0.6826, \quad \mathbf{P}(|X| \leq 2 \sigma)=0.9544, \quad \mathbf{P}(|X| \leq 3 \sigma)=0.9972
$$

where t is a standard normal random variable.

