This is recognized as the exponential CDF with parameter $\lambda + \mu$. Thus, the minimum of two independent exponentials with parameters λ and μ is an exponential with parameter $\lambda + \mu$.

Solution to Problem 4.17. Because the covariance remains unchanged when we add a constant to a random variable, we can assume without loss of generality that X and Y have zero mean. We then have

$$\operatorname{cov}(X - Y, X + Y) = \mathbf{E}[(X - Y)(X + Y)] = \mathbf{E}[X^2] - \mathbf{E}[Y^2] = \operatorname{var}(X) - \operatorname{var}(Y) = 0$$

since X and Y were assumed to have the same variance.

Solution to Problem 4.18. We have

$$\operatorname{cov}(R,S) = \mathbf{E}[RS] - \mathbf{E}[R]\mathbf{E}[S] = \mathbf{E}[WX + WY + X^{2} + XY] = \mathbf{E}[X^{2}] = 1,$$

and

$$\operatorname{var}(R) = \operatorname{var}(S) = 2,$$

 \mathbf{SO}

$$\rho(R,S) = \frac{\operatorname{cov}(R,S)}{\sqrt{\operatorname{var}(R)\operatorname{var}(S)}} = \frac{1}{2}.$$

We also have

$$\operatorname{cov}(R,T) = \mathbf{E}[RT] - \mathbf{E}[R]\mathbf{E}[T] = \mathbf{E}[WY + WZ + XY + XZ] = 0.$$

so that

$$\rho(R,T) = 0$$

Solution to Problem 4.19. To compute the correlation coefficient

$$\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y},$$

we first compute the covariance:

$$cov(X, Y) = \mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[Y]$$

= $\mathbf{E}[aX + bX^2 + cX^3] - \mathbf{E}[X]\mathbf{E}[Y]$
= $a\mathbf{E}[X] + b\mathbf{E}[X^2] + c\mathbf{E}[X^3]$
= $b.$

We also have

$$var(Y) = var(a + bX + cX^{2})$$

= $\mathbf{E}[(a + bX + cX^{2})^{2}] - (\mathbf{E}[a + bX + cX^{2}])^{2}$
= $(a^{2} + 2ac + b^{2} + 3c^{2}) - (a^{2} + c^{2} + 2ac)$
= $b^{2} + 2c^{2}$,

and therefore, using the fact var(X) = 1,

$$\rho(X,Y) = \frac{b}{\sqrt{b^2 + 2c^2}}.$$

Solution to Problem 4.22. If the gambler's fortune at the beginning of a round is a, the gambler bets a(2p-1). He therefore gains a(2p-1) with probability p, and loses a(2p-1) with probability 1-p. Thus, his expected fortune at the end of a round is

$$a(1+p(2p-1)-(1-p)(2p-1)) = a(1+(2p-1)^2).$$

Let X_k be the fortune after the kth round. Using the preceding calculation, we have

$$\mathbf{E}[X_{k+1} | X_k] = (1 + (2p-1)^2) X_k.$$

Using the law of iterated expectations, we obtain

$$\mathbf{E}[X_{k+1}] = (1 + (2p-1)^2)\mathbf{E}[X_k],$$

and

$$\mathbf{E}[X_1] = \left(1 + (2p - 1)^2\right)x.$$

We conclude that

$$\mathbf{E}[X_n] = (1 + (2p-1)^2)^n x$$

Solution to Problem 4.23. (a) Let W be the number of hours that Nat waits. We have

$$\mathbf{E}[X] = \mathbf{P}(0 \le X \le 1)\mathbf{E}[W \mid 0 \le X \le 1] + \mathbf{P}(X > 1)\mathbf{E}[W \mid X > 1].$$

Since W > 0 only if X > 1, we have

$$\mathbf{E}[W] = \mathbf{P}(X > 1)\mathbf{E}[W \mid X > 1] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

(b) Let D be the duration of a date. We have $\mathbf{E}[D \mid 0 \le X \le 1] = 3$. Furthermore, when X > 1, the conditional expectation of D given X is (3 - X)/2. Hence, using the law of iterated expectations,

$$\mathbf{E}[D | X > 1] = \mathbf{E}[\mathbf{E}[D | X] | X > 1] = \mathbf{E}\left[\frac{3-X}{2} | X > 1\right].$$

Therefore,

$$\begin{split} \mathbf{E}[D] &= \mathbf{P}(0 \le X \le 1) \mathbf{E}[D \mid 0 \le X \le 1] + \mathbf{P}(X > 1) \mathbf{E}[D \mid X > 1] \\ &= \frac{1}{2} \cdot 3 + \frac{1}{2} \cdot \mathbf{E} \left[\frac{3 - X}{2} \mid X > 1 \right] \\ &= \frac{3}{2} + \frac{1}{2} \left(\frac{3}{2} - \frac{\mathbf{E}[X \mid X > 1]}{2} \right) \\ &= \frac{3}{2} + \frac{1}{2} \left(\frac{3}{2} - \frac{3/2}{2} \right) \\ &= \frac{15}{8}. \end{split}$$