This is recognized as the exponential CDF with parameter $\lambda+\mu$. Thus, the minimum of two independent exponentials with parameters λ and μ is an exponential with parameter $\lambda+\mu$.
Solution to Problem 4.17. Because the covariance remains unchanged when we add a constant to a random variable, we can assume without loss of generality that X and Y have zero mean. We then have

$$
\operatorname{cov}(X-Y, X+Y)=\mathbf{E}[(X-Y)(X+Y)]=\mathbf{E}\left[X^{2}\right]-\mathbf{E}\left[Y^{2}\right]=\operatorname{var}(X)-\operatorname{var}(Y)=0
$$

since X and Y were assumed to have the same variance.
Solution to Problem 4.18. We have

$$
\operatorname{cov}(R, S)=\mathbf{E}[R S]-\mathbf{E}[R] \mathbf{E}[S]=\mathbf{E}\left[W X+W Y+X^{2}+X Y\right]=\mathbf{E}\left[X^{2}\right]=1
$$

and

$$
\operatorname{var}(R)=\operatorname{var}(S)=2,
$$

so

$$
\rho(R, S)=\frac{\operatorname{cov}(R, S)}{\sqrt{\operatorname{var}(R) \operatorname{var}(S)}}=\frac{1}{2} .
$$

We also have

$$
\operatorname{cov}(R, T)=\mathbf{E}[R T]-\mathbf{E}[R] \mathbf{E}[T]=\mathbf{E}[W Y+W Z+X Y+X Z]=0,
$$

so that

$$
\rho(R, T)=0 .
$$

Solution to Problem 4.19. To compute the correlation coefficient

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}},
$$

we first compute the covariance:

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\mathbf{E}[X Y]-\mathbf{E}[X] \mathbf{E}[Y] \\
& =\mathbf{E}\left[a X+b X^{2}+c X^{3}\right]-\mathbf{E}[X] \mathbf{E}[Y] \\
& =a \mathbf{E}[X]+b \mathbf{E}\left[X^{2}\right]+c \mathbf{E}\left[X^{3}\right] \\
& =b .
\end{aligned}
$$

We also have

$$
\begin{aligned}
\operatorname{var}(Y) & =\operatorname{var}\left(a+b X+c X^{2}\right) \\
& =\mathbf{E}\left[\left(a+b X+c X^{2}\right)^{2}\right]-\left(\mathbf{E}\left[a+b X+c X^{2}\right]\right)^{2} \\
& =\left(a^{2}+2 a c+b^{2}+3 c^{2}\right)-\left(a^{2}+c^{2}+2 a c\right) \\
& =b^{2}+2 c^{2},
\end{aligned}
$$

and therefore, using the fact $\operatorname{var}(X)=1$,

$$
\rho(X, Y)=\frac{b}{\sqrt{b^{2}+2 c^{2}}}
$$

Solution to Problem 4.22. If the gambler's fortune at the beginning of a round is a, the gambler bets $a(2 p-1)$. He therefore gains $a(2 p-1)$ with probability p, and loses $a(2 p-1)$ with probability $1-p$. Thus, his expected fortune at the end of a round is

$$
a(1+p(2 p-1)-(1-p)(2 p-1))=a\left(1+(2 p-1)^{2}\right)
$$

Let X_{k} be the fortune after the k th round. Using the preceding calculation, we have

$$
\mathbf{E}\left[X_{k+1} \mid X_{k}\right]=\left(1+(2 p-1)^{2}\right) X_{k}
$$

Using the law of iterated expectations, we obtain

$$
\mathbf{E}\left[X_{k+1}\right]=\left(1+(2 p-1)^{2}\right) \mathbf{E}\left[X_{k}\right]
$$

and

$$
\mathbf{E}\left[X_{1}\right]=\left(1+(2 p-1)^{2}\right) x
$$

We conclude that

$$
\mathbf{E}\left[X_{n}\right]=\left(1+(2 p-1)^{2}\right)^{n} x
$$

Solution to Problem 4.23. (a) Let W be the number of hours that Nat waits. We have

$$
\mathbf{E}[X]=\mathbf{P}(0 \leq X \leq 1) \mathbf{E}[W \mid 0 \leq X \leq 1]+\mathbf{P}(X>1) \mathbf{E}[W \mid X>1]
$$

Since $W>0$ only if $X>1$, we have

$$
\mathbf{E}[W]=\mathbf{P}(X>1) \mathbf{E}[W \mid X>1]=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}
$$

(b) Let D be the duration of a date. We have $\mathbf{E}[D \mid 0 \leq X \leq 1]=3$. Furthermore, when $X>1$, the conditional expectation of D given X is $(3-X) / 2$. Hence, using the law of iterated expectations,

$$
\mathbf{E}[D \mid X>1]=\mathbf{E}[\mathbf{E}[D \mid X] \mid X>1]=\mathbf{E}\left[\left.\frac{3-X}{2} \right\rvert\, X>1\right]
$$

Therefore,

$$
\begin{aligned}
\mathbf{E}[D] & =\mathbf{P}(0 \leq X \leq 1) \mathbf{E}[D \mid 0 \leq X \leq 1]+\mathbf{P}(X>1) \mathbf{E}[D \mid X>1] \\
& =\frac{1}{2} \cdot 3+\frac{1}{2} \cdot \mathbf{E}\left[\left.\frac{3-X}{2} \right\rvert\, X>1\right] \\
& =\frac{3}{2}+\frac{1}{2}\left(\frac{3}{2}-\frac{\mathbf{E}[X \mid X>1]}{2}\right) \\
& =\frac{3}{2}+\frac{1}{2}\left(\frac{3}{2}-\frac{3 / 2}{2}\right) \\
& =\frac{15}{8}
\end{aligned}
$$

