doesn't spend any time with the student, then Z will be equal to $X+Y$. On the other hand, if the professor is interrupted by the student, then the length of time will be equal to $X+Y+R$. This is because the professor will spend the same amount of total time on the task regardless of whether he is interrupted by the student. Therefore,

$$
\mathbf{E}[Z]=\mathbf{P}(F) \mathbf{E}[Z \mid F]+\mathbf{P}\left(F^{c}\right) \mathbf{E}\left[Z \mid F^{c}\right]=\mathbf{P}(F) \mathbf{E}[X+Y+R]+\mathbf{P}\left(F^{c}\right) \mathbf{E}[X+Y]
$$

Using the results of the earlier calculations,

$$
\begin{gathered}
\mathbf{E}[X+Y]=5 \\
\mathbf{E}[X+Y+R]=\mathbf{E}[X+Y]+\mathbf{E}[R]=5+\frac{1}{2}=\frac{11}{2}
\end{gathered}
$$

Therefore,

$$
\mathbf{E}[Z]=0.68 \cdot 5+0.32 \cdot \frac{11}{2}=5.16
$$

Thus the expected time the professor will leave his office is 5.16 hours after 9 a.m.
Solution to Problem 4.29. The transform is given by

$$
M(s)=\mathbf{E}\left[e^{s X}\right]=\frac{1}{2} e^{s}+\frac{1}{4} e^{2 s}+\frac{1}{4} e^{3 s}
$$

We have

$$
\begin{gathered}
\mathbf{E}[X]=\left.\frac{d}{d s} M(s)\right|_{s=0}=\frac{1}{2}+\frac{2}{4}+\frac{3}{4}=\frac{7}{4} \\
\mathbf{E}\left[X^{2}\right]=\left.\frac{d^{2}}{d s^{2}} M(s)\right|_{s=0}=\frac{1}{2}+\frac{4}{4}+\frac{9}{4}=\frac{15}{4} \\
\mathbf{E}\left[X^{3}\right]=\left.\frac{d^{3}}{d s^{3}} M(s)\right|_{s=0}=\frac{1}{2}+\frac{8}{4}+\frac{27}{4}=\frac{37}{4}
\end{gathered}
$$

Solution to Problem 4.30. The transform associated with X is

$$
M_{X}(s)=e^{s^{2} / 2}
$$

By taking derivatives with respect to s, we find that

$$
\mathbf{E}[X]=0, \quad \mathbf{E}\left[X^{2}\right]=1, \quad \mathbf{E}\left[X^{3}\right]=0, \quad \mathbf{E}\left[X^{4}\right]=3
$$

Solution to Problem 4.31. The transform is

$$
M(s)=\frac{\lambda}{\lambda-s}
$$

Thus,

$$
\frac{d}{d s} M(s)=\frac{\lambda}{(\lambda-s)^{2}}, \quad \frac{d^{2}}{d s^{2}} M(s)=\frac{2 \lambda}{(\lambda-s)^{3}}, \quad \frac{d^{3}}{d s^{3}} M(s)=\frac{6 \lambda}{(\lambda-s)^{4}}
$$

