Bayes' Formula and examples

Math 30530, Fall 2013

September 8, 2013

Example: Who did I beat?

When I play chess, I play Alice (10% of time), Bob (40% of time), and Carole (50% of time). I beat Alice with probability .2, Bob with probability .3, and Carole with probability .4. I've just won a game! How likely is it that I played Alice?

Example: Who did I beat?

When I play chess, I play Alice (10% of time), Bob (40% of time), and Carole (50% of time). I beat Alice with probability .2, Bob with probability .3, and Carole with probability .4. I've just won a game! How likely is it that I played Alice?

Know:

•
$$\Omega = A \cup B \cup C$$
, $Pr(A) = .1$, $Pr(B) = .4$, $Pr(C) = .5$.

•
$$Pr(W|A) = .2, Pr(W|B) = .3, Pr(W|C) = .4$$

Example: Who did I beat?

When I play chess, I play Alice (10% of time), Bob (40% of time), and Carole (50% of time). I beat Alice with probability .2, Bob with probability .3, and Carole with probability .4. I've just won a game! How likely is it that I played Alice?

Know:

•
$$\Omega = A \cup B \cup C$$
, $Pr(A) = .1$, $Pr(B) = .4$, $Pr(C) = .5$.

•
$$Pr(W|A) = .2, Pr(W|B) = .3, Pr(W|C) = .4$$

Want:

F

$$Pr(A|W) = \frac{Pr(A \cap W)}{Pr(W)}$$

=
$$\frac{Pr(W|A) Pr(A)}{Pr(W|A) Pr(A) + Pr(W|B) Pr(B) + Pr(W|C) Pr(C)}$$

=
$$\frac{(.2)(.1)}{(.2)(.1) + (.3)(.4) + (.4)(.5)} \approx .0588.$$

Have: Partition $\Omega = A_1 \cup A_2 \cup \ldots \cup A_n$ (disjoint, cover) Event *B*

Have: Partition $\Omega = A_1 \cup A_2 \cup \ldots \cup A_n$ (disjoint, cover) Event *B*

Know: $Pr(A_i)$ and $Pr(B|A_i)$ for each *i*

Have: Partition $\Omega = A_1 \cup A_2 \cup \ldots \cup A_n$ (disjoint, cover) Event *B*

Know: $Pr(A_i)$ and $Pr(B|A_i)$ for each *i*

Want: $Pr(A_1|B)$

Have: Partition $\Omega = A_1 \cup A_2 \cup \ldots \cup A_n$ (disjoint, cover) Event *B*

Know: $Pr(A_i)$ and $Pr(B|A_i)$ for each *i*

Want: $Pr(A_1|B)$

Bayes' formula:

$$Pr(A_1|B) = \frac{Pr(A_1 \cap B)}{Pr(B)}$$

=
$$\frac{Pr(B|A_1) Pr(A_1)}{Pr(B|A_1) Pr(A_1) + \dots + Pr(B|A_n) Pr(A_n)}$$

Have: Partition $\Omega = A_1 \cup A_2 \cup \ldots \cup A_n$ (disjoint, cover) Event *B*

Know: $Pr(A_i)$ and $Pr(B|A_i)$ for each *i*

Want: $Pr(A_1|B)$

Bayes' formula:

$$Pr(A_1|B) = \frac{Pr(A_1 \cap B)}{Pr(B)}$$

=
$$\frac{Pr(B|A_1) Pr(A_1)}{Pr(B|A_1) Pr(A_1) + \ldots + Pr(B|A_n) Pr(A_n)}$$

Terminology:

- $Pr(A_1)$: **prior** probability of A_1
- Pr(A₁|B): **posterior** probability of A₁

Example: "Long-haired freaky people need not apply"

Notre Dame campus has 55% men and 45% women. Two-thirds of the women wear their hair long, 1/3 short. 10% of the men have long hair, 90% short. I see a (random) student from a distance; I can't make out is it a man or a woman; just that (s)he has long hair. How likely is it that this student is a woman?

Example: "Long-haired freaky people need not apply"

Notre Dame campus has 55% men and 45% women. Two-thirds of the women wear their hair long, 1/3 short. 10% of the men have long hair, 90% short. I see a (random) student from a distance; I can't make out is it a man or a woman; just that (s)he has long hair. How likely is it that this student is a woman?

Prior probabilities:

•
$$\Omega = M \cup W$$
, $Pr(M) = .55$, $Pr(W) = .45$.

•
$$\Pr(L|M) = .1, \Pr(L|W) = .66$$

Example: "Long-haired freaky people need not apply"

Notre Dame campus has 55% men and 45% women. Two-thirds of the women wear their hair long, 1/3 short. 10% of the men have long hair, 90% short. I see a (random) student from a distance; I can't make out is it a man or a woman; just that (s)he has long hair. How likely is it that this student is a woman?

Prior probabilities:

•
$$\Omega = M \cup W$$
, $Pr(M) = .55$, $Pr(W) = .45$.

•
$$\Pr(L|M) = .1, \Pr(L|W) = .66$$

Posterior calculation:

$$Pr(W|L) = \frac{Pr(W \cap L)}{Pr(L)}$$

$$= \frac{Pr(L|W)Pr(W)}{Pr(L|W)Pr(W) + Pr(L|M)Pr(M)}$$

$$= \frac{(.66)(.45)}{(.66)(.45) + (.1)(.55)} \approx .84$$

2% of the population have condition X. There's a test for X. Used on subjects who have X, it correctly detects X 98% of the time. Used on subjects who do not have X, it correctly detects the absence of X 98% of the time. I take the test, and it comes out positive. Do I have X?

2% of the population have condition X. There's a test for X. Used on subjects who have X, it correctly detects X 98% of the time. Used on subjects who do not have X, it correctly detects the absence of X 98% of the time. I take the test, and it comes out positive. Do I have X?

•
$$\Omega = X \cup X^c$$
, $\Pr(X) = .02$, $\Pr(X^c) = .98$.

•
$$\Pr(P|X) = .98, \Pr(P|X^c) = .02$$

2% of the population have condition X. There's a test for X. Used on subjects who have X, it correctly detects X 98% of the time. Used on subjects who do not have X, it correctly detects the absence of X 98% of the time. I take the test, and it comes out positive. Do I have X?

$$Pr(X|P) = \frac{Pr(P|X) Pr(X)}{Pr(P|X) Pr(X) + Pr(P|X^{c}) Pr(X^{c})}$$
$$= \frac{(.98)(.02)}{(.98)(.02) + (.02)(.98)} = .5$$

2% of the population have condition X. There's a test for X. Used on subjects who have X, it correctly detects X 98% of the time. Used on subjects who do not have X, it correctly detects the absence of X 98% of the time. I take the test, and it comes out positive. Do I have X?

$$Pr(X|P) = \frac{Pr(P|X)Pr(X)}{Pr(P|X)Pr(X) + Pr(P|X^{c})Pr(X^{c})}$$
$$= \frac{(.98)(.02)}{(.98)(.02) + (.02)(.98)} = .5$$

Why so low? Among 1,000,000 people, 20,000 have X, 19600 test positive; 980,000 don't have X, 19600 test positive — just as many false positives as true, since number who don't have X much larger than number who do

Math 30530 (Fall 2012)

Question: who wrote the play?

A manuscript of a 16th century play is found. Based on where it was found, and other historical information, scholars assess that the play was written by

- Shakespeare with probability 60%
- Bacon with probability 40%

Question: who wrote the play?

A manuscript of a 16th century play is found. Based on where it was found, and other historical information, scholars assess that the play was written by

- Shakespeare with probability 60%
- Bacon with probability 40%

A probabilist picks a 1000-word chunk of the play, and counts 8 occurrences of the word "thus". She extensively examines the known works of Shakespeare and Bacon, and concludes that in a randomly picked 1000-word chunk of their known writings, the probabilities that each of them use "thus" 8 times are

- 8% for Shakespeare
- 2% for Bacon (he's more a "so" man)

Question: who wrote the play?

A manuscript of a 16th century play is found. Based on where it was found, and other historical information, scholars assess that the play was written by

- Shakespeare with probability 60%
- Bacon with probability 40%

A probabilist picks a 1000-word chunk of the play, and counts 8 occurrences of the word "thus". She extensively examines the known works of Shakespeare and Bacon, and concludes that in a randomly picked 1000-word chunk of their known writings, the probabilities that each of them use "thus" 8 times are

- 8% for Shakespeare
- 2% for Bacon (he's more a "so" man)

Accepting the scholars data as valid, what is the new probability that Shakespeare wrote the play, based on this new evidence?

Answer: probably Shakespeare

- $\Omega = S \cup B$, Pr(S) = .6, Pr(B) = .4.
- $\Pr(E|S) = .08$, $\Pr(E|B) = .02$

Answer: probably Shakespeare

•
$$\Omega = S \cup B$$
, $Pr(S) = .6$, $Pr(B) = .4$.

• $\Pr(E|S) = .08$, $\Pr(E|B) = .02$

$$Pr(S|E) = \frac{Pr(E|S) Pr(S)}{Pr(E|S) Pr(S) + Pr(E|B) Pr(B)} \\ = \frac{(.08)(.6)}{(.08)(.6) + (.02)(.4)} \approx .86$$

Answer: probably Shakespeare

•
$$\Omega = S \cup B$$
, $\Pr(S) = .6$, $\Pr(B) = .4$.

• $\Pr(E|S) = .08$, $\Pr(E|B) = .02$

$$Pr(S|E) = \frac{Pr(E|S) Pr(S)}{Pr(E|S) Pr(S) + Pr(E|B) Pr(B)} \\ = \frac{(.08)(.6)}{(.08)(.6) + (.02)(.4)} \approx .86$$

This method was used (successfully) by Mosteller and Wallace to asses which of the disputed Federalist papers were written by Madison, and which by Hamilton

• Frederick Mosteller and David L. Wallace, Inference and Disputed Authorship: The Federalist. Addison-Wesley, Reading, Mass., 1964.