Bayes' Formula and examples

Math 30530, Fall 2013

September 8, 2013

Example: Who did I beat?

When I play chess, I play Alice (10% of time), Bob (40% of time), and Carole (50\% of time). I beat Alice with probability .2, Bob with probability .3 , and Carole with probability .4. I've just won a game! How likely is it that I played Alice?

Example: Who did I beat?

When I play chess, I play Alice (10% of time), Bob (40% of time), and Carole (50\% of time). I beat Alice with probability .2, Bob with probability .3, and Carole with probability .4. I've just won a game! How likely is it that I played Alice?

Know:

- $\Omega=A \cup B \cup C, \operatorname{Pr}(A)=.1, \operatorname{Pr}(B)=.4, \operatorname{Pr}(C)=.5$.
- $\operatorname{Pr}(W \mid A)=.2, \operatorname{Pr}(W \mid B)=.3, \operatorname{Pr}(W \mid C)=.4$

Example: Who did I beat?

When I play chess, I play Alice (10% of time), Bob (40% of time), and Carole (50\% of time). I beat Alice with probability .2, Bob with probability .3 , and Carole with probability .4.
I've just won a game! How likely is it that I played Alice?
Know:

- $\Omega=A \cup B \cup C, \operatorname{Pr}(A)=.1, \operatorname{Pr}(B)=.4, \operatorname{Pr}(C)=.5$.
- $\operatorname{Pr}(W \mid A)=.2, \operatorname{Pr}(W \mid B)=.3, \operatorname{Pr}(W \mid C)=.4$

Want:

$$
\begin{aligned}
\operatorname{Pr}(A \mid W) & =\frac{\operatorname{Pr}(A \cap W)}{\operatorname{Pr}(W)} \\
& =\frac{\operatorname{Pr}(W \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(W \mid A) \operatorname{Pr}(A)+\operatorname{Pr}(W \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(W \mid C) \operatorname{Pr}(C)} \\
& =\frac{(.2)(.1)}{(.2)(.1)+(.3)(.4)+(.4)(.5)} \approx .0588
\end{aligned}
$$

Bayes' Formula

Have: Partition $\Omega=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ (disjoint, cover) Event B

Bayes' Formula

Have: Partition $\Omega=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ (disjoint, cover) Event B

Know: $\operatorname{Pr}\left(A_{i}\right)$ and $\operatorname{Pr}\left(B \mid A_{i}\right)$ for each i

Bayes' Formula

Have: Partition $\Omega=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ (disjoint, cover) Event B

Know: $\operatorname{Pr}\left(A_{i}\right)$ and $\operatorname{Pr}\left(B \mid A_{i}\right)$ for each i
Want: $\operatorname{Pr}\left(A_{1} \mid B\right)$

Bayes' Formula

Have: Partition $\Omega=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ (disjoint, cover)

Event B

Know: $\operatorname{Pr}\left(A_{i}\right)$ and $\operatorname{Pr}\left(B \mid A_{i}\right)$ for each i
Want: $\operatorname{Pr}\left(A_{1} \mid B\right)$
Bayes' formula:

$$
\begin{aligned}
\operatorname{Pr}\left(A_{1} \mid B\right) & =\frac{\operatorname{Pr}\left(A_{1} \cap B\right)}{\operatorname{Pr}(B)} \\
& =\frac{\operatorname{Pr}\left(B \mid A_{1}\right) \operatorname{Pr}\left(A_{1}\right)}{\operatorname{Pr}\left(B \mid A_{1}\right) \operatorname{Pr}\left(A_{1}\right)+\ldots+\operatorname{Pr}\left(B \mid A_{n}\right) \operatorname{Pr}\left(A_{n}\right)}
\end{aligned}
$$

Bayes' Formula

Have: Partition $\Omega=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ (disjoint, cover)
Event B
Know: $\operatorname{Pr}\left(A_{i}\right)$ and $\operatorname{Pr}\left(B \mid A_{i}\right)$ for each i
Want: $\operatorname{Pr}\left(A_{1} \mid B\right)$
Bayes' formula:

$$
\begin{aligned}
\operatorname{Pr}\left(A_{1} \mid B\right) & =\frac{\operatorname{Pr}\left(A_{1} \cap B\right)}{\operatorname{Pr}(B)} \\
& =\frac{\operatorname{Pr}\left(B \mid A_{1}\right) \operatorname{Pr}\left(A_{1}\right)}{\operatorname{Pr}\left(B \mid A_{1}\right) \operatorname{Pr}\left(A_{1}\right)+\ldots+\operatorname{Pr}\left(B \mid A_{n}\right) \operatorname{Pr}\left(A_{n}\right)}
\end{aligned}
$$

Terminology:

- $\operatorname{Pr}\left(A_{1}\right)$: prior probability of A_{1}
- $\operatorname{Pr}\left(A_{1} \mid B\right)$: posterior probability of A_{1}

Example: "Long-haired freaky people need not apply"

Notre Dame campus has 55% men and 45% women. Two-thirds of the women wear their hair long, $1 / 3$ short. 10% of the men have long hair, 90% short. I see a (random) student from a distance; I can't make out is it a man or a woman; just that (s)he has long hair. How likely is it that this student is a woman?

Example: "Long-haired freaky people need not apply"

Notre Dame campus has 55% men and 45% women. Two-thirds of the women wear their hair long, $1 / 3$ short. 10% of the men have long hair, 90% short. I see a (random) student from a distance; I can't make out is it a man or a woman; just that (s)he has long hair. How likely is it that this student is a woman?

Prior probabilities:

- $\Omega=M \cup W, \operatorname{Pr}(M)=.55, \operatorname{Pr}(W)=.45$.
$-\operatorname{Pr}(L \mid M)=.1, \operatorname{Pr}(L \mid W)=.66$

Example: "Long-haired freaky people need not apply"

Notre Dame campus has 55% men and 45% women. Two-thirds of the women wear their hair long, $1 / 3$ short. 10% of the men have long hair, 90% short. I see a (random) student from a distance; I can't make out is it a man or a woman; just that (s)he has long hair. How likely is it that this student is a woman?

Prior probabilities:

- $\Omega=M \cup W, \operatorname{Pr}(M)=.55, \operatorname{Pr}(W)=.45$.
- $\operatorname{Pr}(L \mid M)=.1, \operatorname{Pr}(L \mid W)=.66$

Posterior calculation:

$$
\begin{aligned}
\operatorname{Pr}(W \mid L) & =\frac{\operatorname{Pr}(W \cap L)}{\operatorname{Pr}(L)} \\
& =\frac{\operatorname{Pr}(L \mid W) \operatorname{Pr}(W)}{\operatorname{Pr}(L \mid W) \operatorname{Pr}(W)+\operatorname{Pr}(L \mid M) \operatorname{Pr}(M)} \\
& =\frac{(.66)(.45)}{(.66)(.45)+(.1)(.55)} \approx .84
\end{aligned}
$$

Example: Gulp, I tested positive

2% of the population have condition X. There's a test for X. Used on subjects who have X, it correctly detects $X 98 \%$ of the time. Used on subjects who do not have X, it correctly detects the absence of $X 98 \%$ of the time. I take the test, and it comes out positive. Do I have X ?

Example: Gulp, I tested positive

2% of the population have condition X. There's a test for X. Used on subjects who have X, it correctly detects $\mathrm{X} 98 \%$ of the time. Used on subjects who do not have X, it correctly detects the absence of $X 98 \%$ of the time. I take the test, and it comes out positive. Do I have X ?

- $\Omega=X \cup X^{c}, \operatorname{Pr}(X)=.02, \operatorname{Pr}\left(X^{c}\right)=.98$.
- $\operatorname{Pr}(P \mid X)=.98, \operatorname{Pr}\left(P \mid X^{c}\right)=.02$

Example: Gulp, I tested positive

2% of the population have condition X. There's a test for X. Used on subjects who have X, it correctly detects X 98\% of the time. Used on subjects who do not have X, it correctly detects the absence of $X 98 \%$ of the time. I take the test, and it comes out positive. Do I have X ?

- $\Omega=X \cup X^{c}, \operatorname{Pr}(X)=.02, \operatorname{Pr}\left(X^{c}\right)=.98$.
- $\operatorname{Pr}(P \mid X)=.98, \operatorname{Pr}\left(P \mid X^{c}\right)=.02$

$$
\begin{aligned}
\operatorname{Pr}(X \mid P) & =\frac{\operatorname{Pr}(P \mid X) \operatorname{Pr}(X)}{\operatorname{Pr}(P \mid X) \operatorname{Pr}(X)+\operatorname{Pr}\left(P \mid X^{c}\right) \operatorname{Pr}\left(X^{c}\right)} \\
& =\frac{(.98)(.02)}{(.98)(.02)+(.02)(.98)}=.5
\end{aligned}
$$

Example: Gulp, I tested positive

2% of the population have condition X. There's a test for X. Used on subjects who have X, it correctly detects X 98% of the time. Used on subjects who do not have X, it correctly detects the absence of X 98% of the time. I take the test, and it comes out positive. Do I have X ?

- $\Omega=X \cup X^{c}, \operatorname{Pr}(X)=.02, \operatorname{Pr}\left(X^{c}\right)=.98$.
- $\operatorname{Pr}(P \mid X)=.98, \operatorname{Pr}\left(P \mid X^{c}\right)=.02$

$$
\begin{aligned}
\operatorname{Pr}(X \mid P) & =\frac{\operatorname{Pr}(P \mid X) \operatorname{Pr}(X)}{\operatorname{Pr}(P \mid X) \operatorname{Pr}(X)+\operatorname{Pr}\left(P \mid X^{c}\right) \operatorname{Pr}\left(X^{c}\right)} \\
& =\frac{(.98)(.02)}{(.98)(.02)+(.02)(.98)}=.5
\end{aligned}
$$

Why so low? Among 1,000,000 people, 20,000 have $X, 19600$ test positive; 980,000 don't have X, 19600 test positive - just as many false positives as true, since number who don't have X much larger than number who do

Question: who wrote the play?

A manuscript of a 16th century play is found. Based on where it was found, and other historical information, scholars assess that the play was written by

- Shakespeare - with probability 60%
- Bacon — with probability 40%

Question: who wrote the play?

A manuscript of a 16th century play is found. Based on where it was found, and other historical information, scholars assess that the play was written by

- Shakespeare - with probability 60%
- Bacon — with probability 40%

A probabilist picks a 1000 -word chunk of the play, and counts 8 occurrences of the word "thus". She extensively examines the known works of Shakespeare and Bacon, and concludes that in a randomly picked 1000 -word chunk of their known writings, the probabilities that each of them use "thus" 8 times are

- 8% for Shakespeare
- 2% for Bacon (he's more a "so" man)

Question: who wrote the play?

A manuscript of a 16th century play is found. Based on where it was found, and other historical information, scholars assess that the play was written by

- Shakespeare - with probability 60%
- Bacon — with probability 40%

A probabilist picks a 1000 -word chunk of the play, and counts 8 occurrences of the word "thus". She extensively examines the known works of Shakespeare and Bacon, and concludes that in a randomly picked 1000 -word chunk of their known writings, the probabilities that each of them use "thus" 8 times are

- 8% for Shakespeare
- 2% for Bacon (he's more a "so" man)

Accepting the scholars data as valid, what is the new probability that Shakespeare wrote the play, based on this new evidence?

Answer: probably Shakespeare

- $\Omega=S \cup B, \operatorname{Pr}(S)=.6, \operatorname{Pr}(B)=.4$.
- $\operatorname{Pr}(E \mid S)=.08, \operatorname{Pr}(E \mid B)=.02$

Answer: probably Shakespeare

- $\Omega=S \cup B, \operatorname{Pr}(S)=.6, \operatorname{Pr}(B)=.4$.
- $\operatorname{Pr}(E \mid S)=.08, \operatorname{Pr}(E \mid B)=.02$

$$
\begin{aligned}
\operatorname{Pr}(S \mid E) & =\frac{\operatorname{Pr}(E \mid S) \operatorname{Pr}(S)}{\operatorname{Pr}(E \mid S) \operatorname{Pr}(S)+\operatorname{Pr}(E \mid B) \operatorname{Pr}(B)} \\
& =\frac{(.08)(.6)}{(.08)(.6)+(.02)(.4)} \approx .86
\end{aligned}
$$

Answer: probably Shakespeare

- $\Omega=S \cup B, \operatorname{Pr}(S)=.6, \operatorname{Pr}(B)=.4$.
- $\operatorname{Pr}(E \mid S)=.08, \operatorname{Pr}(E \mid B)=.02$

$$
\begin{aligned}
\operatorname{Pr}(S \mid E) & =\frac{\operatorname{Pr}(E \mid S) \operatorname{Pr}(S)}{\operatorname{Pr}(E \mid S) \operatorname{Pr}(S)+\operatorname{Pr}(E \mid B) \operatorname{Pr}(B)} \\
& =\frac{(.08)(.6)}{(.08)(.6)+(.02)(.4)} \approx .86
\end{aligned}
$$

This method was used (successfully) by Mosteller and Wallace to asses which of the disputed Federalist papers were written by Madison, and which by Hamilton

- Frederick Mosteller and David L. Wallace, Inference and Disputed Authorship: The Federalist. Addison-Wesley, Reading, Mass., 1964.

