Math 30530 - Introduction to Probability

Quiz 5 - Monday December 9, 2013
Solutions

Instructions: This is a closed-book quiz. Please do not use any notes.

1. I toss a fair coin repeatedly until I first toss a Head. Let X be the number of times I have to toss the coin (so the possible values of X are $1,2,3, \ldots$). Write down the mass function of X (i.e., for each $k \geq 1$, write down $p_{X}(k)=\operatorname{Pr}(X=k)$). [Note:"fair" means the coin comes up heads 50% of the time.]

Solution: $\operatorname{Pr}(X=k)=(1 / 2)^{k}$.
2. Compute the transform, or moment generating function, of X (the function $M_{X}(s)=E\left(e^{s X}\right)$). [Hint: geometric series $1+x+x^{2}+\ldots=1 /(1-x)$.]

Solution:

$$
\begin{aligned}
M_{X}(s) & =E\left(e^{s X}\right) \\
& =\sum_{k=1}^{\infty} e^{s k}\left(\frac{1}{2}\right)^{k} \\
& =\sum_{k=1}^{\infty}\left(\frac{e^{s}}{2}\right)^{k} \\
& =\frac{e^{s} / 2}{1-e^{s} / 2} \\
& =\frac{e^{s}}{2-e^{s}} .
\end{aligned}
$$

3. Use your expression for $M_{X}(s)$ to calculate $E(X)$ (and, for a bonus point, $\operatorname{Var}(X)$).

Solution:

$$
M_{X}^{\prime}(s)=\frac{\left(2-e^{s}\right) e^{s}+e^{2 s}\left(2-e^{s}\right)}{\left(2-e^{s}\right)^{2}}
$$

so

$$
E(X)=M_{X}^{\prime}(0)=\frac{(2-1)+1(2-1)}{(2-1)^{2}}=2 .
$$

Similarly, one can calculate $E\left(X^{2}\right)=M_{X}^{\prime \prime}(0)=6$ to get $\operatorname{Var}(X)=6-2^{2}=2$.

