Math 30530 - Introduction to Probability

Quiz 3 - Wednesday October 9, 2013
Solutions

1. I have five $\mathrm{M} \& \mathrm{M}$ candies in a bag; three are red and two are green. I take out three at random, and count how many red ones I selected. Let X be this number. Calculate the expected value of X.

Solution: Possible values for X are 1,2 and 3 (I can't select 0) reds. The probability of selecting 1 red (and 2 greens) is $\binom{3}{1}\binom{2}{2} /\binom{5}{3}=.3$. The probability of selecting 2 reds (and 1 green) is $\binom{3}{2}\binom{2}{1} /\binom{5}{3}=.6$. The probability of selecting 3 reds (and 0 greens) is $\binom{3}{3}\binom{2}{0} /\binom{5}{3}=.1$. So

$$
E(X)=1(.3)+2(.6)+3(.1)=1.8
$$

2. Calculate the variance and standard deviation of X.

Solution:

$$
E\left(X^{2}\right)=1^{2}(.3)+2^{2}(.6)+3^{2}(.1)=3.6,
$$

so $\operatorname{Var}(X)=3.6-(1.8)^{2}=.36$ and $\sigma=.6$.
3. Instead of eating the three candies, I decide to sell them. I can sell x red M\&M's for x^{3} dollars (red M\&M's are more valuable when they are gathered in groups), and I can sell each green M\&M for 1 dollar. What is my expected revenue from selling the three M\&M's?

Solution: If I have x red M\&M's then I have $3-x$ greens, and I can sell for $x^{3}+3-x$ dollars. So we are looking for $E\left(X^{3}-X+3\right)$. This is

$$
E\left(X^{3}-X+3\right)=\left(1^{3}-1+3\right)(.3)+\left(2^{3}-2+3\right)(.6)+\left(3^{3}-3+3\right)(.1)=3(.3)+9(.6)+27(.1)=9 .
$$

Notice that this is not the same as $E(X)^{3}-E(X)+3$: expectation is linear, so $E(a X+b)=a E(X)+b$, but in general it is not true that $E(f(X))=f(E(X))$ for a non-linear function f.

