Introduction to Probability, Fall 2013

Math 30530 Section 01

Homework 9 - solutions

1. (a) Let X be an exponential random variable with parameter λ_{1}, and Y be an exponential random variable with parameter λ_{2}. If X and Y are independent, compute the density function of $Z=\min \{X, Y\}$, and show that it is exactly the same as the density function of the exponential random variable with parameter $\lambda_{1}+\lambda_{2}$.

Solution: Range of values for Z : 0 to ∞. For $0 \leq z \leq \infty$,

$$
\begin{aligned}
\operatorname{Pr}(Z \leq z) & =1-\operatorname{Pr}(Z \geq z) \\
& =1-\operatorname{Pr}(\min \{X, Y\} \geq z) \\
& =1-\operatorname{Pr}(X \geq z \text { and } Y \geq z) \\
& =1-\operatorname{Pr}(X \geq z)(Y \geq z) \\
& =1-\left(\int_{z}^{\infty} \lambda_{1} e^{-\lambda_{1} x} d x\right)\left(\int_{z}^{\infty} \lambda_{2} e^{-\lambda_{2} y} d y\right) \\
& =1-\left[-e^{-\lambda_{1} x}\right]_{z}^{\infty}\left[-e^{-\lambda_{2} y}\right]_{z}^{\infty} \\
& =1-e^{-\lambda_{1} z-\lambda_{2} z} .
\end{aligned}
$$

Differentiating, we get

$$
f_{Z}(z)=\left\{\begin{array}{cc}
0 & \text { if } z<0 \\
\left(\lambda_{1}+\lambda_{2}\right) e^{-\left(\lambda_{1}+\lambda_{2}\right) z} & \text { if } z \geq 0
\end{array}\right.
$$

which is exactly the density function of the exponential random variable with parameter $\lambda_{1}+\lambda_{2}$.
(b) By using the standard interpretation of the exponential random variable, convince yourself that it is no surprise that if $X \sim \operatorname{exponential}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{exponential}\left(\lambda_{2}\right)$, and X and Y are independent, then $\min \{X, Y\} \sim \operatorname{exponential}\left(\lambda_{1}+\lambda_{2}\right)$.

Solution: If type one occurrences occur at rate λ_{1} per unit time, and type one occurrences occur (independently) at rate λ_{2} per unit time, then occurrences of some type occur at rate $\lambda_{1}+\lambda_{2}$ per unit time. $\min \{X, Y\}$ measures the time until the first occurrence of some type (one or two), so it should be modeled by an exponential with parameter $\lambda_{1}+\lambda_{2}$.
2. Chapter 4, problems 1, 2, 5, 7, 9 - see supplementary solutions file.

