# Introduction to Probability, Fall 2013 

Math 30530 Section 01

## Homework 8 - Solutions

1. Verify that the variance of the standard normal random variable $Z$ with parameters $\mu=0$ and $\sigma^{2}=1$ is indeed 1 , by explicitly computing $\int_{-\infty}^{\infty}(1 / \sqrt{2 \pi}) x^{2} e^{-x^{2} / 2} d x$. You can assume that $E(Z)=0$ and that the density function for $Z, f(x)=(1 / \sqrt{2 \pi}) e^{-x^{2} / 2}$, is indeed a density function, that is that $\int_{-\infty}^{\infty}(1 / \sqrt{2 \pi}) e^{-x^{2} / 2} d x=1$.

Solution: We know $E(Z)=0$, so

$$
\operatorname{Var}(Z)=E\left(Z^{2}\right)-(E(Z))^{2}=E\left(Z^{2}\right)=\int_{-\infty}^{\infty}(1 / \sqrt{2 \pi}) x^{2} e^{-x^{2} / 2} d x
$$

Use integration by parts with $u=x$ and $d v=(1 / \sqrt{2 \pi}) x e^{-x^{2} / 2} d x$, so $d u=d x$ and $v=-(1 / \sqrt{2 \pi}) e^{-x^{2} / 2}$. We get

$$
\begin{aligned}
\int_{-\infty}^{\infty}(1 / \sqrt{2 \pi}) x^{2} e^{-x^{2} / 2} d x & =\left[-(1 / \sqrt{2 \pi}) x e^{-x^{2} / 2}\right]_{x=-\infty}^{\infty}-\int_{-\infty}^{\infty}-(1 / \sqrt{2 \pi}) e^{-x^{2} / 2} d x \\
& =[0-0]+\int_{-\infty}^{\infty}(1 / \sqrt{2 \pi}) e^{-x^{2} / 2} d x \\
& =1
\end{aligned}
$$

the last line using $\int_{-\infty}^{\infty}(1 / \sqrt{2 \pi}) e^{-x^{2} / 2} d x=1$.
2. Chapter 3, problems 11, 12, 13 - see supplemental solutions file.
3. The temperature of a steel rod four hours after tempering is known to be normally distributed with mean 75 degree Celsius and standard deviation 25.
(a) Compute the probability that a rod has temperature above 105 degrees Celsius four hours after tempering.
Solution: Let $X$ be temp. of rod after 4 hours. $X \sim \operatorname{Normal}\left(75,25^{2}\right)$. Want $\operatorname{Pr}(X>105)=\operatorname{Pr}(Z>1.2)=.1151$.
(b) I can begin using a rod after tempering once its temperature has dropped below 105 degrees Celsius. If 10 rods are set aside for four hours after tempering, whats the probability that I can use at least 7 of them at this time?

Solution: Let $Y$ be number I can use. By previous part, $Y \sim \operatorname{Binomial}(10, .8849)$. Want $\operatorname{Pr}(Y \geq 7)=.9792$ (from a binomial calculator).
4. A soft drink machine can be regulated so that it discharges an average of $\mu$ ounces per cup. If the amount the machine dispenses is modeled by a normal random variable with standard deviation 0.3 ounces, find a value of $\mu$ such that 8 -ounce cups will over flow only $1 \%$ of the time.

Solution: Let $X$ be amount dispensed; $X \sim \operatorname{Normal}(\mu, .3)$. Want $\operatorname{Pr}(X \geq 8)=.01$. From table, $\operatorname{Pr}(Z>2.33)=.01$ ( $Z$ a standard normal). So, we want to choose $\mu$ so that 8 is 2.33 standard deviations above $\mu$; i.e, $\mu=8-(2.33)(.3)=.7301$.
5. The distribution of resistance for resistors of a certain type is known to be normal. $9.85 \%$ of all resistors have a resistance exceeding 10.257 Ohms, and $5.05 \%$ have resistance smaller than 9.671 Ohms. What are the mean value and standard deviation of the resistance distribution?

Solution: Let $X$ be distribution of resistors; $X \sim \operatorname{Normal}(\mu, \sigma)$. Know:

$$
\operatorname{Pr}(X>10.257)=.0985, \quad \text { so } \quad \operatorname{Pr}(Z>(10.257-\mu) / \sigma)=.0985 .
$$

From normal table, $\operatorname{Pr}(Z>1.29)=.0985$, so $(10.257-\mu) / \sigma=1.29$.
Also know:

$$
\operatorname{Pr}(X>9.671)=.0505, \quad \text { so } \quad \operatorname{Pr}(Z>(9.671-\mu) / \sigma)=.0505 .
$$

From normal table, $\operatorname{Pr}(Z<-1.64)=.0505$, so $(9.671-\mu) / \sigma=-1.64$.
Solving these two equations get $\mu=10$ and $\sigma=.2$.
6. Chapter 3, problem 15 - see supplemental solutions file.
7. My dog Casey has run off into the forest. Painful past experience has taught me that the time until Casey is sprayed by a skunk is exponentially distributed with an average (expected value) of 2 hours. If the time it takes me to run back home and return with Casey's favorite squeak-toy ranges between 20 and 40 minutes, and is uniformly distributed over that interval, Calculate the probability that I succeed in luring Casey back with her favorite toy before she gets sprayed by a skunk. (Assume that Casey comes back to me the moment I return with the squeak-toy).

Solution: $X=$ time 'til skunk sprays (exponential with $\lambda=1 / 2$ if units are hours); $Y=$ time until I return (uniform with $a=1 / 3, b=2 / 3$ if units are hours). Joint density of $X$ and $Y$ is product of individual densities (since $X, Y$ independent), so it's 0 except on the strip $1 / 3 \leq y \leq 2 / 3,0 \leq x \leq \infty$; on this strip the joint density is

$$
f(x, y)=\left(\frac{1}{2} e^{-x / 2}\right)\left(\frac{1}{\frac{2}{3}-\frac{1}{3}}\right)=\frac{3}{2} e^{-x / 2} .
$$

We want $\operatorname{Pr}(X>Y)$; the part of the strip with $x>y$ is a razor-shaped area described by $1 / 3 \leq y \leq 2 / 3$, and for each such $y, y \leq x \leq \infty$. So

$$
\operatorname{Pr}(X>Y)=\int_{y=1 / 3}^{2 / 3} \int_{x=y}^{\infty} \frac{3}{2} e^{-x / 2} d x d y \approx .7797
$$

8. An introverted professor $X$ rarely turns her face away from the blackboard. The moment when she first faces her students is equally likely to occur at any point during her hour-long lecture. $X$ 's student, $Y$, is very busy. He's always at least 10 minutes late, though he always manages to get to class (at a completely random moment) before the lecture is halfway through. How likely is it that when $X$ faces the class for the first time, she'll see $Y$ eagerly taking notes?

Solution: $X=$ time 'til Prof. turns around (uniform with $a=0, b=60$ if units are minutes); $Y=$ time until student shows up (uniform with $a=10, b=30$ if units are minutes). Joint density of $X$ and $Y$ is product of individual densities (since $X, Y$ independent), so it's 0 except on the strip $0 \leq x \leq 60,10 \leq y \leq 30$; on this strip the joint density is

$$
f(x, y)=\left(\frac{1}{60-0}\right)\left(\frac{1}{30-10}\right)=\frac{1}{1200} .
$$

We want $\operatorname{Pr}(X>Y)$; the part of the strip with $x>y$ is a razor-shaped area described by $10 \leq y \leq 30$, and for each such $y, y \leq x \leq 60$. So

$$
\operatorname{Pr}(X>Y)=\int_{y=10}^{30} \int_{x=y}^{60} \frac{1}{1200} d x d y=2 / 3 .
$$

(Or: we could have just computed the area of the razor, which is 800 , and divided it by the total area 1200 , since the joint distribution on the strip is uniform).
9. The joint density of a pair of random variables $X, Y$ is

$$
f(x, y)= \begin{cases}C x e^{-4 y} & \text { if } 0 \leq x \leq 4 \text { and } 0 \leq y \leq \infty \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $C$.

Solution: We calculate

$$
\int_{x=0}^{4} \int_{y=0}^{\infty} x e^{-4 y} d y d x=2,
$$

so $C=1 / 2$.
(b) Are $X$ and $Y$ independent? Explain.

Solution: It seems so, since the joint density is defined on a rectangle, and factors into a part involving $x$ and a part involving $y$. We confirm by calculating

$$
\int_{y=0}^{\infty} \frac{x e^{-4 y}}{2} d y=\frac{x}{8}
$$

and

$$
\int_{x=0}^{4} \frac{x e^{-4 y}}{2} d x=4 e^{-4 y}
$$

This shows that the marginal density of $X$ is $\frac{x}{8}$ if $0 \leq x \leq 4$ (and is 0 otherwise), and that the marginal density of $Y$ is $4 e^{-4 y}$ if $0 \leq y \leq \infty$ (and is 0 otherwise). The product of these two marginals is exactly the given joint density, so by definition of independence, the two random variables are independent.
(c) Calculate $\operatorname{Pr}(X+Y \geq 4)$.

Solution: We need to do the double integral of the joint density over that part of the region $0 \leq x \leq 4,0 \leq y \leq \infty$, where $x+y \geq 4$. This turns out to be:

$$
\int_{x=0}^{4} \int_{y=4-x}^{i n f t y} \frac{x e^{-4 y}}{2} d y d x \approx .117
$$

(d) Find the marginal density of $X$.

Solution: We've already done this earlier:

$$
f_{X}(x)=\int_{y=-\infty}^{\infty} f(x, y) d y=\left\{\begin{array}{cc}
0 & \text { if } x<0 \text { or } x>4 \\
\int_{y=0}^{\infty} \frac{x e^{-4 y}}{2} d y=\frac{x}{8} & \text { if } 0 \leq x \leq 4
\end{array}\right.
$$

10. Let $X$ and $Y$ be independent uniform random variables, both taking values between -1 and 1 . Find the probability that the quadratic equation

$$
t^{2}-X t+Y=0
$$

has real roots.
Solution: The condition for real roots is $X^{2} \geq 4 Y$ of $Y \leq X^{2} / 4$. So, the probability of real roots is the double integral, over that part of the square $[-1,1] \times[-1,1]$ where $y \leq x^{2} / 4$, of the joint density of $X$ and $Y$, which is the constant function $1 / 4$ on the square.
A picture shows that this probability is calculated as

$$
\int_{x=-1}^{1} \int_{y=-1}^{x^{2} / 4} \frac{1}{4} d y d x \approx .5417
$$

