Introduction to Probability, Fall 2013

Math 30530 Section 01

Homework 7 - Solutions

1. Chapter 2, problems 38, 39, 40 and 41 (a, b, c only) - see Homework 7 solutions file 1 on website.
2. By writing the Negative Binomial random variable with parameters p (success probability on each trial) and m (number of successes needed until experiment stops) as a sum of independent geometric random variables, calculate the mean and variance (in terms of p and m).

Solution: Let $X \sim \operatorname{NegativeBinomial}(m, p)$. We can write $X=X_{1}+X_{2}+\ldots+X_{m}$, where X_{1} is the number of trials until the first success, X_{2} is the number of trials after the first success until the second success, and so on. Each X_{i} is a geometric random variable with parameter p, and because the individual trials are independent, the X_{i} 's are independent. So we can use our knowledge of the mean and variance of the geometric to calculate both the mean and variance of the negative binomial:

$$
E(X)=E\left(X_{1}+\ldots+X_{n}\right)=E\left(X_{1}\right)+\ldots+E\left(X_{n}\right)=\frac{m}{p}
$$

and

$$
\operatorname{Var}(X)=\operatorname{Var}\left(X_{1}+\ldots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)=\frac{m(1-p)}{p^{2}}
$$

The expectation calculation would have worked, whether or not the X_{i} 's were independent; the variance calculation only works because of independence.
3. Chapter 3, problems $1,2,5,6,7$ and $8 —$ - see Homework 7 solutions file 2 on website.

