Introduction to Probability, Fall 2013

Math 30530 Section 01
Homework 6 - solutions

1. Let X be a Poisson random variable with parameter λ. Show that the variance of X is λ.

Solution:

$$
\begin{aligned}
E\left(X^{2}\right) & =\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda} \\
& =e^{-\lambda} \sum_{k=0}^{\infty}(k(k-1)+k) \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda}\left(\sum_{k=0}^{\infty}(k(k-1)-k) \frac{\lambda^{k}}{k!}+\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!}\right) \\
& =e^{-\lambda}\left(\sum_{k=2}^{\infty}(k(k-1)) \frac{\lambda^{k}}{k!}+\sum_{k=1}^{\infty} k \frac{\lambda^{k}}{k!}\right) \\
& =e^{-\lambda}\left(\lambda^{2} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!}+\lambda \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!}\right) \\
& =e^{-\lambda}\left(\lambda^{2} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}+\lambda \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}\right) \\
& =e^{-\lambda}\left(\lambda^{2} e^{\lambda}+\lambda e^{\lambda}\right) \\
& =\lambda^{2}+\lambda .
\end{aligned}
$$

So, since $E(X)=\lambda, \operatorname{Var}(X)=\lambda^{2}+\lambda-\lambda^{2}=\lambda$.
2. I roll two dice. Alice looks at the maximum of the two numbers that come up, and calls this X. Bob looks at the minimum, and calls it Y (for example, if the roll leads to a 3 and a 5 , then $X=5$ and $Y=3$; if the roll leads to two 6 's, then $X=Y=6$).
(a) Write down the joint mass function of X and Y in a 6 by 6 table.

Solution: Values of X go down, values of Y go across. For clarity, I have written
only the numerator of each entry; the denominator is always 36 .

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	1	0	0	0	0	0
$\mathbf{2}$	2	1	0	0	0	0
$\mathbf{3}$	2	2	1	0	0	0
$\mathbf{4}$	2	2	2	1	0	0
$\mathbf{5}$	2	2	2	2	1	0
$\mathbf{6}$	2	2	2	2	2	1

For example, the $X=4, y=3$ entry is 2 (out of 36), since there exactly 2 ways of getting max of 4 and min of 3 : first dice 4 , second dice 3 , or first dice 3 , second dice 4 .
(b) After the roll, Bob pays Alice $X^{2}-Y^{2}$ dollars. Calculate the expected number of dollars that Alice receives.

Solution: Sum over all pairs (x, y) with $1 \leq x \leq 6$ and $1 \leq y \leq 6$; the thing we are summing is $x^{2}-y^{2}$ weighted with the (x, y) entry of the table (divided by 36). Answer is $245 / 18 \approx \$ 13.61$.
3. Four students, 1, 2, 3 and 4 , take a make-up quiz, which is made up of 5 parts, i,ii,iii,iv and v. 1 answers only parts i,ii and iii. 2 and 3 both answer only parts i, iv and v. 4 answers all 5 parts. This means that between the four students, there are 14 question-parts completed. I pick one of these 14 at random to grade first, and I record the following pair of numbers: X, which is the number of the student whose quiz I have chosen, and Y, which is the part number of the answer I am about to grade (I record $Y=1$ if it is part i, $Y=2$ if it is part ii, etc.).
(a) Write down the joint mass function of X and Y in a table.

Solution: Values of X go down, values of Y go across. For clarity, I have written only the numerator of each entry; the denominator is always 14 .

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	1	1	1	0	0
$\mathbf{2}$	1	0	0	1	1
$\mathbf{3}$	1	0	0	1	1
$\mathbf{4}$	1	1	1	1	1

(b) Find the marginal mass function of X using the table.

Solution: Summing across the rows, we find that $p_{X}(1)=p_{X}(2)=p_{X}(3)=3 / 14$ and $p_{X}(4)=5 / 14$; all other values of $p_{X}(x)$ are 0 .
(c) Find the marginal mass function of Y using the table.

Solution: Summing down the columns, we find that $p_{Y}(1)=4 / 14, p_{Y}(2)=$ $p_{X}(3)=2 / 14$ and $p_{Y}(4)=p_{Y}(5)=3 / 14 ;$ all other values of $p_{Y}(y)$ are 0 .

4. Chapter 2, problem 24

Solution:

Solution to Problem 2.24. (a) There are 21 integer pairs (x, y) in the region

$$
R=\{(x, y) \mid-2 \leq x \leq 4,-1 \leq y-x \leq 1\}
$$

so that the joint PMF of X and Y is

$$
p_{X, Y}(x, y)= \begin{cases}1 / 21, & \text { if }(x, y) \text { is in } R \\ 0, & \text { otherwise }\end{cases}
$$

For each x in the range $[-2,4]$, there are three possible values of Y. Thus, we have

$$
p_{X}(x)= \begin{cases}3 / 21, & \text { if } x=-2,-1,0,1,2,3,4 \\ 0, & \text { otherwise }\end{cases}
$$

The mean of X is the midpoint of the range $[-2,4]$:

$$
\mathbf{E}[X]=1
$$

The marginal PMF of Y is obtained by using the tabular method. We have

$$
p_{Y}(y)= \begin{cases}1 / 21, & \text { if } y=-3 \\ 2 / 21, & \text { if } y=-2 \\ 3 / 21, & \text { if } y=-1,0,1,2,3 \\ 2 / 21, & \text { if } y=4 \\ 1 / 21, & \text { if } y=5 \\ 0, & \text { otherwise }\end{cases}
$$

The mean of Y is

$$
\mathbf{E}[Y]=\frac{1}{21} \cdot(-3+5)+\frac{2}{21} \cdot(-2+4)+\frac{3}{21} \cdot(-1+1+2+3)=1
$$

(b) The profit is given by

$$
P=100 X+200 Y
$$

so that

$$
\mathbf{E}[P]=100 \cdot \mathbf{E}[X]+200 \cdot \mathbf{E}[Y]=100 \cdot 1+200 \cdot 1=300
$$

5. Chapter 2, problem 26

Solution:

Solution to Problem 2.26. (a) The possible values of the random variable X are the ten numbers $101, \ldots, 110$, and the PMF is given by

$$
p_{X}(k)= \begin{cases}\mathbf{P}(X>k-1)-\mathbf{P}(X>k), & \text { if } k=101, \ldots 110 \\ 0, & \text { otherwise }\end{cases}
$$

We have $\mathbf{P}(X>100)=1$ and for $k=101, \ldots 110$,

$$
\begin{aligned}
\mathbf{P}(X>k) & =\mathbf{P}\left(X_{1}>k, X_{2}>k, X_{3}>k\right) \\
& =\mathbf{P}\left(X_{1}>k\right) \mathbf{P}\left(X_{2}>k\right) \mathbf{P}\left(X_{3}>k\right) \\
& =\frac{(110-k)^{3}}{10^{3}}
\end{aligned}
$$

It follows that

$$
p_{X}(k)= \begin{cases}\frac{(111-k)^{3}-(110-k)^{3}}{10^{3}}, & \text { if } k=101, \ldots 110, \\ 0, & \text { otherwise. }\end{cases}
$$

(An alternative solution is based on the notion of a CDF, which will be introduced in Chapter 3.)
(b) Since X_{i} is uniformly distributed over the integers in the range [101, 110], we have $\mathbf{E}\left[X_{i}\right]=(101+110) / 2=105.5$. The expected value of X is

$$
\mathbf{E}[X]=\sum_{k=-\infty}^{\infty} k \cdot p_{X}(k)=\sum_{k=101}^{110} k \cdot p_{x}(k)=\sum_{k=101}^{110} k \cdot \frac{(111-k)^{3}-(110-k)^{3}}{10^{3}}
$$

The above expression can be evaluated to be equal to 103.025 . The expected improvement is therefore $105.5-103.025=2.475$.

Alternate approach to part a): How many ways can I write down three numbers in a row, all between 101 and 110, with the smallest of the three being $100+\ell$? EITHER all three numbers are $100+\ell$ (one way) OR exactly two of them are $100+\ell$ (three ways to choose which two, $10-\ell$ ways to choose last number bigger than $100+\ell$) OR exactly one of them is $100+\ell$ (three ways to choose which one, $(10-\ell)^{2}$ ways to choose last two numbers both bigger than $100+$ ell $)$. So the total number of ways is

$$
1+3(10-\ell)+3(10-\ell)^{2}
$$

Since there are 1000 possible ways to choose the three numbers, this shows that, for $1 \leq \ell \leq 10$,

$$
\operatorname{Pr}\left(\min \left\{X_{1}, X_{2}, X_{3}\right\}=100+\ell\right)=\frac{1+3(10-\ell)+3(10-\ell)^{2}}{1000}
$$

This looks different from the solution above, but after a little algebra you will see that it is the same.
6. Back to Alice and Bob: Alice repeatedly rolls a dice until the first time that she rolls a 6 , and lets X be the number of attempts it took her. Independently, Bob repeatedly rolls a pair of dice until the first time that he sees a pair of 6 's, and lets X be the number of attempts it took her.
(a) Which pairs (x, y) are such that there is a non-zero probability that $X=x$ and simultaneously $Y=y$?

Solution: All pairs (x, y) with $x>0$ and $y>0(x, y$ both integers) are possible.
(b) For each such pair (x, y), calculate $\operatorname{Pr}(X=x, Y=y)$ (i.e., the value of the joint mass function $\left.p_{X, Y}(x, y)\right)$.

Solution: Here and in the remaining parts, I'll use p for $1 / 6$ and q for $1 / 36$, to make the writing easier. By independence of Bob and Alice's rolls,
$p_{X, Y}(x, y)=\operatorname{Pr}(X=x, Y=y)=\operatorname{Pr}(X=x) \operatorname{Pr}(Y=y)=(1-p)^{x-1} p(1-q)^{y-1} q$.
(c) Use the joint mass function to calculate the probability that Alice and Bob finish their experiments after the same number of trials (that is, that $X=Y$).

Solution: This is asking for $p_{X, Y}(1,1)+p_{X, Y}(2,2)+p_{X, Y}(3,3)+\ldots$ Using the sum of a geometric series formula, then,

$$
\begin{aligned}
\operatorname{Pr}(X=Y) & =p q+(1-p)(1-q) p q+(1-p)^{2}(1-q)^{2} p q+(1-p)^{3}(1-q)^{3} p q+\ldots \\
& =\frac{p q}{1-(1-p)(1-q)}
\end{aligned}
$$

Substituting in our values for p, q, get $\operatorname{Pr}(X=Y)=1 / 41 \approx .02439$.
(d) Use the joint mass function to calculate the probability that Alice finishes her experiment before Bob does (that is, that $X<Y$).

Solution: Suppose Alice finishes in exactly k rolls (a probability $(1-p)^{k-1} p$ event). Then the event $X<Y$ is the same as the event that Bob failed to finish within k rolls, which is a probability $(1-q)^{k}$ event. So, using law of total probability and the sum of a geometric series,

$$
\begin{aligned}
\operatorname{Pr}(X<Y) & =\sum_{k=1}^{\infty} \operatorname{Pr}(X<Y \mid X=k) \operatorname{Pr}(X=k) \\
& =(1-q) p+(1-q)^{2}(1-p) p+(1-q)^{3}(1-p)^{2} p+(1-q)^{4}(1-p)^{3} p+\ldots \\
& =\frac{(1-q) p}{1-(1-q)(1-p)}
\end{aligned}
$$

Substituting in our values for p, q, get $\operatorname{Pr}(X=Y)=35 / 41 \approx .853659$.
Reality check: the same argument gives $P(Y<X)=((1-p) q) /(1-(1-q)(1-$ $p))=5 / 41$, so $\operatorname{Pr}(X=Y)+\operatorname{Pr}(X<Y)+\operatorname{Pr}(Y<X)=1$, as of course it should.

