Introduction to Probability, Fall 2013

Math 30530 Section 01

Homework 10 - solutions

1. (a) Let X be a uniformly selected random number on the interval [0,1$]$. For $a>0$ and $b \in \mathbb{R}$, let $Y=a X+b$. Calculate the density function of Y.
Solution: Possible values for Y : anything from b to $a+b$. For each $b \leq y \leq a+b$,

$$
\operatorname{Pr}(Y \leq y)=\operatorname{Pr}(a X+b \leq y)=\operatorname{Pr}(X \leq(y-b) / a)=(y-b) / a
$$

the last equality using the fact that X is uniform on $[0,1]$. So, the CDF of Y is

$$
F_{Y}(y)= \begin{cases}0 & \text { if } y<a \\ (y-b) / a & \text { if } a \leq y \leq b+a \\ 1 & \text { if } y>b+a\end{cases}
$$

and the density of Y is

$$
f_{Y}(y)= \begin{cases}0 & \text { if } y<a \\ 1 / a & \text { if } a \leq y \leq b+a \\ 0 & \text { if } y>b+a\end{cases}
$$

(b) Write down the density function of a uniformly selected random number on the interval $[b, a+b](a>0$ and $b \in \mathbb{R})$.
Solution: Exactly the same as the density of Y in the last part: if X is a uniformly selected random number on the interval $[b, a+b]$, then the density of X is

$$
f_{X}(x)= \begin{cases}0 & \text { if } x<a \\ 1 / a & \text { if } a \leq x \leq b+a \\ 0 & \text { if } x>b+a\end{cases}
$$

2. I throw a dart n times at a dartboard with radius 1 , each time selecting a uniform and independent point from the board. Let X_{i} be the random variable that records the distance from my i th throw to the center of the dartboard, and let $Y_{(n)}$ be the distance to the center of the dartboard of my closest throw (i.e.

$$
\left.Y_{(n)}=\min \left\{X_{1}, \ldots, X_{n}\right\}\right)
$$

(a) Find the density function of $Y_{(n)}$.

Solution: We start with the CDF of $Y_{(n)}$. The possible values of $Y_{(n)}$ are anything from 0 to 1 , so we each $0 \leq y \leq 1$ we want to compute $\operatorname{Pr}\left(Y_{(n)} \leq y\right)$. It's easier to compute $\operatorname{Pr}\left(Y_{(n)} \geq y\right)$, because

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{(n)} \geq y\right) & =\operatorname{Pr}\left(\min \left\{X_{1}, \ldots, X_{n}\right\} \geq y\right) \\
& =\operatorname{Pr}\left(X_{1} \geq y \text { AND } X_{2} \geq y \text { AND } \ldots \text { AND } X_{n} \geq y\right) \\
& =\left(\operatorname{Pr}\left(X_{1} \geq y\right)\right)^{n} .
\end{aligned}
$$

The probability that $X_{1} \geq y$ is the probability of landing in the annulus outside the circle of radius y, which is $\left(\pi 1^{2}-\pi y^{2}\right) /\left(\pi 1^{2}\right)=1-y^{2}$. So

$$
\operatorname{Pr}\left(Y_{(n)} \leq y\right)=1-\operatorname{Pr}\left(Y_{(n)} \geq y\right)=1-\left(1-y^{2}\right)^{n}
$$

It follows that the CDF of $Y_{(n)}$ is

$$
F_{n}(y)= \begin{cases}0 & \text { if } y<0 \\ 1-\left(1-y^{2}\right)^{n} & \text { if } 0 \leq y \leq 1 \\ 1 & \text { if } y>1\end{cases}
$$

and the density of $Y_{(n)}$ is

$$
f_{n}(y)= \begin{cases}0 & \text { if } y<0 \\ 2 y n\left(1-y^{2}\right)^{n-1} & \text { if } 0 \leq y \leq 1 \\ 0 & \text { if } y>1\end{cases}
$$

(b) For $n=1,2,3,4$, find $E\left(Y_{(n)}\right)$.

Solution: From the density, $E\left(Y_{(n)}\right)=\int_{0}^{1} 2 y^{2} n\left(1-y^{2}\right)^{n-1} d y$. Calculating this integral for $n=1,2,3,4$ gives values of $2 / 3,8 / 15,16 / 35$, and 128/315 (roughly .67, .53, .46, and .41).
(c) For $n=1,2,3,4$, find $\operatorname{Pr}\left(Y_{(n)}<.5\right)$.

Solution: From the density, $\operatorname{Pr}\left(Y_{(n)}<.5\right)=\int_{0}^{.5} 2 y n\left(1-y^{2}\right)^{n-1} d y$. Calculating this integral for $n=1,2,3,4$ gives values of $.25, .4375, .578125$, and .68359375 .
3. Use the transform of the exponential random variable (which we calculated in class) to compute $E(X)$ and $\operatorname{Var}(X)$ when $X \sim \operatorname{exponential}(\lambda)$.
Solution: We computed $M_{X}(s)=\frac{\lambda}{\lambda-s}$ for $X \sim \operatorname{exponential}(\lambda)$ (as long as $s<\lambda$), so

$$
M_{x}^{\prime}(s)=\frac{\lambda}{(\lambda-s)^{2}}, \quad \text { so } \quad E(X)=M_{x}^{\prime}(0)=\frac{1}{\lambda}
$$

and

$$
M_{x}^{\prime \prime}(s)=\frac{2 \lambda}{(\lambda-s)^{3}}, \quad \text { so } \quad E\left(X^{2}\right)=M_{x}^{\prime \prime}(0)=\frac{2}{\lambda^{2}},
$$

so

$$
\operatorname{Var}(X)=\frac{2}{\lambda^{2}}-\left(\frac{1}{\lambda}\right)^{2}=\frac{1}{\lambda^{2}}
$$

4. (a) Let $X \sim \operatorname{Poisson}(\lambda)$. Calculate the transform X.

Solution: $P(K=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for $X \sim \operatorname{Poisson}(\lambda)(k=0,1,2,3, \ldots)$, so

$$
\begin{aligned}
M_{X}(s) & =E\left(e^{s X}\right) \\
& =\sum_{k=0}^{\infty} e^{s k} \frac{\lambda^{k}}{k!} e^{-\lambda} \\
& =e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(e^{s} \lambda\right)^{k}}{k!} \\
& =e^{-\lambda} e^{e^{s} \lambda} \\
& =e^{\lambda\left(e^{s}-1\right)},
\end{aligned}
$$

the second-from-last inequality using the power series for $e^{x}, e^{x}=1+x+\ldots+$ $x^{l} / k!+\ldots$ This transform is valid for all s.
(b) Let $X \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$ be independent. Use transforms to show that $X+Y \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$.
Solution: From previous part,

$$
M_{X}(s)=e^{\lambda_{1}\left(e^{s}-1\right)}, \quad M_{Y}(s)=e^{\lambda_{2}\left(e^{s}-1\right)} .
$$

Since we know that the transform of a sum of independent rvs is a product of the transforms, we get

$$
M_{X+Y}(s)=e^{\lambda_{1}\left(e^{s}-1\right)} e^{\lambda_{2}\left(e^{s}-1\right)}=e^{\lambda_{1}\left(e^{s}-1\right)+\lambda_{2}\left(e^{s}-1\right)}=e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{s}-1\right)} .
$$

This is exactly the transform of a Poisson random variable with parameter $\lambda_{1}+\lambda_{2}$, and so we are done.
5. I choose r items from a collection of $N+M$ items, one after the other, without replacement. N of the items are "good" and the remaining M are "bad". Let X_{i} be the indicator random variable indicating whether the i th item I chose was good (so $X_{i}=1$ if the i th item was good, and $X_{i}=0$ if it was bad). For $i \neq j$, calculate the covariance $\operatorname{Cov}\left(X_{i}, X_{j}\right)$, and the correlation coefficient. (Note: it should be very small, going to 0 as N and M go to infinity; this justifies treating samples without replacement as being essentially independent when the population is large).
Solution: There are $\operatorname{Ntimes}(N+M-1)(N+M-2) \ldots(N+M-(r-1))$ ways of choosing the r items so that the i th is good (think about choosing the i th item first, from among the N good items, and choosing the remaining $r-1$ items arbitrarily from what's left). There are $(N+M)(N+M-1)(N+M-2) \ldots(N+M-(r-1))$ ways of choosing the r items, in total. So

$$
\operatorname{Pr}\left(X_{i}=1\right)=\frac{N \times(N+M-1)(N+M-2) \ldots(N+M-(r-1))}{(N+M)(N+M-1)(N+M-2) \ldots(N+M-(r-1))}=\frac{N}{N+M},
$$

and $\operatorname{Pr}\left(X_{i}=0\right)=M /(N+M)$. Similarly,

$$
\operatorname{Pr}\left(X_{j}=1\right)=\frac{N}{N+M},
$$

and $\operatorname{Pr}\left(X_{j}=0\right)=M /(N+M)$. We thus get that

$$
E\left(X_{i}\right)=\frac{N}{N+M}, \quad E\left(X_{i}^{2}\right)=\frac{N}{N+M}, \quad \operatorname{Var}\left(X_{i}\right)=\frac{M N}{(N+M)^{2}}
$$

and

$$
E\left(X_{j}\right)=\frac{N}{N+M}, \quad E\left(X_{j}^{2}\right)=\frac{N}{N+M}, \quad \operatorname{Var}\left(X_{j}\right)=\frac{M N}{(N+M)^{2}}
$$

There are $N(N-1)$ times $(N+M-2)(N+M-3) \ldots(N+M-(r-1))$ ways of choosing the r items so that the i th and j th are both good (think about choosing the i th item first, then the j th item, from among the N good items, and choosing the remaining $r-2$ items arbitrarily from what's left). There are $(N+M)(N+M-1)(N+M-$ 2) $\ldots(N+M-(r-1))$ ways of choosing the r items, in total. So

$$
\begin{aligned}
\operatorname{Pr}\left(X_{i} X_{j}=1\right) & =E\left(X_{i} X_{j}\right) \\
& =\frac{N(N-1) \times(N+M-2) \ldots(N+M-(r-1))}{(N+M)(N+M-1)(N+M-2) \ldots(N+M-(r-1))} \\
& =\frac{N(N-1)}{(N+M)(N+M-1)},
\end{aligned}
$$

and so

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, X_{j}\right) & =E\left(X_{i} X_{j}\right)-E\left(X_{i}\right) E\left(X_{j}\right) \\
& =\frac{N(N-1)}{(N+M)(N+M-1)}-\left(\frac{N}{N+M}\right)^{2} \\
& =\frac{-N M}{(N+M)^{2}(N+M-1)}
\end{aligned}
$$

and

$$
\begin{aligned}
\rho & =\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\sqrt{\operatorname{Var}\left(X_{i}\right) \operatorname{Var}\left(X_{j}\right)}} \\
& =\frac{\frac{-N M}{(N+M)^{2}(N+M-1)}}{\frac{M N}{(N+M)^{2}}} \\
& =\frac{-1}{N+M-1}
\end{aligned}
$$

This is indeed small; this shows that although X_{i} and X_{j} are very slightly (negatively) correlated, when $N+M$ is large they are essentially uncorrelated.
6. Chapter 4 , problems 29 and 30 - see the supplementary solution file 1.
7. Chapter 4, problems 17,18 and 19 - see the supplementary solution file 2.

