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The Bernoulli random variable
Name: Bernoulli(p)
When to use: When you want to indicate whether an experiment
resulted in success or not; Bernoulli random variable takes value 1
if success occurred, and 0 otherwise
Parameter:

I p: the probability of success (so p = Pr(A) if success is that event A
occurred)

Mass function:

pX (x) =


p if x = 1
q = 1 − p if x = 0
0 otherwise

Statistics:
I µ = E(X ) = p
I σ2 = Var(X ) = p(1 − p) = pq
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The Binomial random variable
Name: Binomial(n,p)
When to use: When you want to count how many successes you
had, when you repeat the same experiment a fixed number of
times, independently of each other
Parameters:

I n: the number of times the experiment is repeated
I p: the probability of success on each individual trial

Mass function:

pX (x) =
{ (n

x

)
pxqn−x if x = 0,1,2, . . . ,n

0 otherwise

where
(n

x

)
= n!

x!(n−x)! counts the number of ways of distributing x
successes among n trials, and n! = n × (n − 1)× . . .× 3 × 2 × 1
Statistics:

I µ = E(X ) = np
I σ2 = Var(X ) = npq
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The Geometric random variable
Name: Geometric(p)
When to use: When you want to count how many times you have
to repeat the same experiment, independently of each other,
until you first have success
Parameter:

I p: the probability of success on each individual trial

Mass function:

pX (x) =
{

qx−1p if x = 1,2,3, . . .
0 otherwise

Statistics:
I µ = E(X ) = 1

p
I σ2 = Var(X ) = q

p2
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The Negative Binomial random variable
Name: NegBinomial(r ,p)
When to use: When you want to count how many times you have
to repeat the same experiment, independently of each other,
until you first have some predetermined number of successes
Parameters:

I r : the number of successes you are aiming for
I p: the probability of success on each individual trial

Mass function:

pX (x) =
{ (x−1

r−1

)
qx−r pr if x = r , r + 1, r + 2, . . .

0 otherwise

Statistics:
I µ = E(X ) = r

p
I σ2 = Var(X ) = rq

p2
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The Discrete Uniform random variable
Name: D.Uniform(N)

When to use: When you are assigning values 1 through N to N
equally likely outcomes
Parameter:

I N: the number of outcomes

Mass function:

pX (x) =
{ 1

N if x = 1,2,3, . . . ,N
0 otherwise

Statistics:
I µ = E(X ) = N+1

2
I σ2 = Var(X ) = N2−1

12
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The Hypergeometric random variable
Name: Hypergeometric(M,N,n)
When to use: When you are selecting a fixed number of items
from a fixed size pool, containing a fixed number of desirable
objects, without replacement and with order not mattering, and
you are counting how many of the selected objects are desirable
Parameters:

I M: the number of desirable objects in the pool
I N: the total number of objects in the pool
I n: the number you are selecting (n ≤ M)

Mass function:

pX (x) =

 (M
x )(

N−M
n−x )

(N
n)

if x = 0,1,2,3, . . . ,n

0 otherwise

Statistics:
I µ = E(X ) = n M

N
I σ2 = Var(X ) = n M

N

(
1 − M

N

) N−n
n−1
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Hypergeometric(M,N,n) is like Binomial(n,M/N)

Viewing hypergeometric as “pick n, one after another”, both are

X1 + X2 + . . .+ Xn

with each Xi ∼ Bernoulli(M/N)

Difference
I For Binomial(n,M/N), Xi ’s are independent
I For Hypergeometric(M,N,n), they are not; Pr(Xn = 1) varies

between
M

N − (n − 1)
and

M − (n − 1)
N − (n − 1)

depending on previous choices

If n small compared to N,M, not much difference here

Example: When polling 1000 people (without replacement) out of
100,000,000 to see who they will vote for, can model situation with
Binomial (easy) rather than Hypergeometric (harder)
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The Poisson process
Events occur repeatedly over a period of time

Occurrences in disjoint time intervals are independent
Simultaneous occurrences are very rare
The average number of occurrences per unit time is constant
throughout the time period
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The Poisson random variable
Name: Poisson(λ)

When to use: When you are counting the number of occurrences
of an event in unit time, when the occurrences satisfy the
conditions of the Poisson process; or, when you are approximating
X ∼ Binomial(n,p) with n large, p small, np moderate
Parameter:

I λ: the average number of occurrences per unit time, or np

Mass function:

pX (x) =
{

λx

x! e
−λ if x = 0,1,2,3, . . .

0 otherwise

Statistics:
I µ = E(X ) = λ
I σ2 = Var(X ) = λ
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